问题描述
现在,不管开发一个多大的系统(至少我现在的部门是这样的),都会带一个日志功能;在实际开发过程中,会专门有一个日志模块,负责写日志,由于在系统的任何地方,我们都有可能要调用日志模块中的函数,进行写日志。那么,如何构造一个日志模块的实例呢?难道,每次new一个日志模块实例,写完日志,再delete,不要告诉我你是这么干的。在C++中,可以构造一个日志模块的全局变量,那么在任何地方就都可以用了,是的,不错。但是,我所在的开发部门的C++编码规范是参照Google的编码规范的。
全局变量在项目中是能不用就不用的,它是一个定时炸弹,是一个不安全隐患,特别是在多线程程序中,会有很多的不可预测性;同时,使用全局变量,也不符合面向对象的封装原则,所以,在纯面向对象的语言Java和C#中,就没有纯粹的全局变量。那么,如何完美的解决这个日志问题,就需要引入设计模式中的单例模式。
单例模式
何为单例模式,在GOF的《设计模式:可复用面向对象软件的基础》中是这样说的:保证一个类只有一个实例,并提供一个访问它的全局访问点。首先,需要保证一个类只有一个实例;在类中,要构造一个实例,就必须调用类的构造函数,如此,为了防止在外部调用类的构造函数而构造实例,需要将构造函数的访问权限标记为protected或private;最后,需要提供要给全局访问点,就需要在类中定义一个static函数,返回在类内部唯一构造的实例。意思很明白,使用UML类图表示如下。
UML类图
代码实现
单例模式,单从UML类图上来说,就一个类,没有错综复杂的关系。但是,在实际项目中,使用代码实现时,还是需要考虑很多方面的。
实现一:
/**
**提供全局访问点:变量 类
**/
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
if (m_Instance == NULL )
{
m_Instance = new Singleton ();
}
return m_Instance;
}
private:
static Singleton *m_Instance;
Singleton(){}
~Singleton(){}
};
Singleton *Singleton ::m_Instance = NULL;
int main()
{
Singleton *sa = Singleton::GetInstance();
Singleton *sa2 = Singleton::GetInstance();
if(sa == sa2){
cout << "sa===sa2" << endl;
}
return 0;
}
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
if (m_Instance == NULL )
{
m_Instance = new Singleton ();
}
return m_Instance;
}
static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
// This is just a operation example
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 10; }
static Singleton *m_Instance;
int m_Test;
};
Singleton *Singleton ::m_Instance = NULL;
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
return 0;
}
这是最简单,也是最普遍的实现方式,也是现在网上各个博客中记述的实现方式,但是,这种实现方式,有很多问题,比如:没有考虑到多线程的问题,在多线程的情况下,就可能创建多个Singleton实例,以下版本是改善的版本。
实现二:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
if (m_Instance == NULL )
{
Lock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
if (m_Instance == NULL )
{
m_Instance = new Singleton ();
}
UnLock(); // C++没有直接的Lock操作,请使用其它库的Lock,比如Boost,此处仅为了说明
}
return m_Instance;
}
static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 0; }
static Singleton *m_Instance;
int m_Test;
};
Singleton *Singleton ::m_Instance = NULL;
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
return 0;
}
此处进行了两次m_Instance == NULL的判断,是借鉴了Java的单例模式实现时,使用的所谓的“双检锁”机制。因为进行一次加锁和解锁是需要付出对应的代价的,而进行两次判断,就可以避免多次加锁与解锁操作,同时也保证了线程安全。但是,这种实现方法在平时的项目开发中用的很好,也没有什么问题?但是,如果进行大数据的操作,加锁操作将成为一个性能的瓶颈;为此,一种新的单例模式的实现也就出现了。
实现三
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
return const_cast <Singleton *>(m_Instance);
}
static void DestoryInstance()
{
if (m_Instance != NULL )
{
delete m_Instance;
m_Instance = NULL ;
}
}
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 10; }
static const Singleton *m_Instance;
int m_Test;
};
const Singleton *Singleton ::m_Instance = new Singleton();
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
Singleton ::DestoryInstance();
}
因为静态初始化在程序开始时,也就是进入主函数之前,由主线程以单线程方式完成了初始化,所以静态初始化实例保证了线程安全性。在性能要求比较高时,就可以使用这种方式,从而避免频繁的加锁和解锁造成的资源浪费。由于上述三种实现,都要考虑到实例的销毁,关于实例的销毁,待会在分析。由此,就出现了第四种实现方式:
实现四
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
static Singleton m_Instance;
return &m_Instance;
}
int GetTest()
{
return m_Test++;
}
private:
Singleton(){ m_Test = 10; };
int m_Test;
};
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
}
以上就是四种主流的单例模式的实现方式,如果大家还有什么好的实现方式,希望大家能推荐给我。谢谢了。
实例销毁
在上述的四种方法中,除了第四种没有使用new操作符实例化对象以外,其余三种都使用了;我们一般的编程观念是,new操作是需要和delete操作进行匹配的;是的,这种观念是正确的。在上述的实现中,是添加了一个DestoryInstance的static函数,这也是最简单,最普通的处理方法了;但是,很多时候,我们是很容易忘记调用DestoryInstance函数,就像你忘记了调用delete操作一样。由于怕忘记delete操作,所以就有了智能指针;那么,在单例模型中,没有“智能单例”,该怎么办?怎么办?
那我先从实际的项目中说起吧,在实际项目中,特别是客户端开发,其实是不在乎这个实例的销毁的。因为,全局就这么一个变量,全局都要用,它的生命周期伴随着软件的生命周期,软件结束了,它也就自然而然的结束了,因为一个程序关闭之后,它会释放它占用的内存资源的,所以,也就没有所谓的内存泄漏了。但是,有以下情况,是必须需要进行实例销毁的:
- 在类中,有一些文件锁了,文件句柄,数据库连接等等,这些随着程序的关闭而不会立即关闭的资源,必须要在程序关闭前,进行手动释放;
- 具有强迫症的程序员。
以上,就是我总结的两点。
虽然,在代码实现部分的第四种方法能满足第二个条件,但是无法满足第一个条件。好了,接下来,就介绍一种方法,这种方法也是我从网上学习而来的,代码实现如下:
#include <iostream>
using namespace std;
class Singleton
{
public:
static Singleton *GetInstance()
{
return m_Instance;
}
int GetTest()
{
return m_Test;
}
private:
Singleton(){ m_Test = 10; }
static Singleton *m_Instance;
int m_Test;
// This is important
class GC
{
public :
~GC()
{
// We can destory all the resouce here, eg:db connector, file handle and so on
if (m_Instance != NULL )
{
cout<< "Here is the test" <<endl;
delete m_Instance;
m_Instance = NULL ;
}
}
};
static GC gc;
};
Singleton *Singleton ::m_Instance = new Singleton();
Singleton ::GC Singleton ::gc;
int main(int argc , char *argv [])
{
Singleton *singletonObj = Singleton ::GetInstance();
cout<<singletonObj->GetTest()<<endl;
return 0;
}
在程序运行结束时,系统会调用Singleton的静态成员GC的析构函数,该析构函数会进行资源的释放,而这种资源的释放方式是在程序员“不知道”的情况下进行的,而程序员不用特别的去关心,使用单例模式的代码时,不必关心资源的释放。那么这种实现方式的原理是什么呢?我剖析问题时,喜欢剖析到问题的根上去,绝不糊涂的停留在表面。由于程序在结束的时候,系统会自动析构所有的全局变量,实际上,系统也会析构所有类的静态成员变量,就像这些静态变量是全局变量一样。我们知道,静态变量和全局变量在内存中,都是存储在静态存储区的,所以在析构时,是同等对待的。
由于此处使用了一个内部GC类,而该类的作用就是用来释放资源,而这种使用技巧在C++中是广泛存在的。
模式扩展
在实际项目中,一个模式不会像我们这里的代码那样简单,只有在熟练了各种设计模式的特点,才能更好的在实际项目中进行运用。单例模式和工厂模式在实际项目中经常见到,两种模式的组合,在项目中也是很常见的。所以,有必要总结一下两种模式的结合使用。
一种产品,在一个工厂中进行生产,这是一个工厂模式的描述;而只需要一个工厂,就可以生产一种产品,这是一个单例模式的描述。所以,在实际中,一种产品,我们只需要一个工厂,此时,就需要工厂模式和单例模式的结合设计。由于单例模式提供对外一个全局的访问点,所以,我们就需要使用简单工厂模式中那样的方法,定义一个标识,用来标识要创建的是哪一个单件。由于模拟代码较多,在文章最后,提供下载链接。
总结
为了写这篇文章,自己调查了很多方面的资料,由于网上的资料在各方面都有很多的瑕疵,质量参次不齐,对我也造成了一定的误导。而这篇文章,有我自己的理解,如有错误,请大家指正。
由于该文对设计模式的总结,我认为比网上80%的都全面,希望对大家有用。在实际的开发中,并不会用到单例模式的这么多种,每一种设计模式,都应该在最适合的场合下使用,在日后的项目中,应做到有地放矢,而不能为了使用设计模式而使用设计模式。
单例+模板
#include <iostream>
using namespace std;
template<typename T>
class Singleton
{
public:
static T *getInstance()
{
if(p == NULL)
{
p = new T();
}
return p;
}
private:
static T *p;
};
template<typename T>
T *Singleton<T>::p = nullptr;
class Log{
public:
Log();
~Log();
public:
int display()
{
printf("file:%s func:%s line:%d\n", __FILE__, __FUNCTION__, __LINE__);
return 0;
}
};
class Global
{
public:
Log *mplog;
};
int main()
{
printf("file:%s func:%s line:%d\n", __FILE__, __FUNCTION__, __LINE__);
Log *test1;
Log *test2;
test1 = Singleton<Global>::getInstance()->mplog; //实例化对象赋值
test2 = Singleton<Global>::getInstance()->mplog; //实例化对象赋值
test1->display();
test2->display();
printf("file:%s func:%s line:%d\n", __FILE__, __FUNCTION__, __LINE__);
if(test1 == test2)
{
cout << "sa===sa2" << endl;
}
return 0;
}
# 饿汉和饥汉
简述
单例模式(Singleton Pattern)是设计模式中最简单的形式之一,其目的是使得类的一个对象成为系统中的唯一实例。
这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一对象的方式,可以直接访问,不需要实例化该类的对象。
UML 结构图
要点
单例模式的要点有三个:
- 单例类有且仅有一个实例
- 单例类必须自行创建自己的唯一实例
- 单例类必须给所有其他对象提供这一实例
从具体实现角度来说,可分为以下三点:
- 提供一个 private 构造函数(防止外部调用而构造类的实例)
- 提供一个该类的 static private 对象
- 提供一个 static public 函数,用于创建或获取其本身的静态私有对象(例如:GetInstance())
除此之外,还有一些关键点(需要多加注意,很容易忽视):
- 线程安全(双检锁 - DCL,即:double-checked locking)
- 资源释放
局部静态变量
这种方式很常见,实现非常简单,而且无需担心单例的销毁问题。
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
// 非真正意义上的单例
class Singleton
{
public:
static Singleton& GetInstance()
{
static Singleton instance;
return instance;
}
private:
Singleton() {}
};
#endif // SINGLETON_H
但是,这并非真正意义上的单例。当使用如下方式访问单例时:
Singleton single = Singleton::GetInstance();
这会出现了一个类拷贝问题,从而违背了单例的特性。产生这个问题原因在于:编译器会生成一个默认的拷贝构造函数,来支持类的拷贝。
为了避免这个问题,有两种解决方式:
- 将 GetInstance() 函数的返回类型修改为指针,而非引用。
- 显式地声明类的拷贝构造函数,并重载赋值运算符。
对于第一种方式,只需要修改 GetInstance() 的返回类型即可:
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
// 单例
class Singleton
{
public:
// 修改返回类型为指针类型
static Singleton* GetInstance()
{
static Singleton instance;
return &instance;
}
private:
Singleton() {}
};
#endif // SINGLETON_H
既然编译器会生成一个默认的拷贝构造函数,那么,为什么不让编译器不这么干呢?这就产生了第二种方式:
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
#include <iostream>
using namespace std;
// 单例
class Singleton
{
public:
static Singleton& GetInstance()
{
static Singleton instance;
return instance;
}
void doSomething() {
cout << "Do something" << endl;
}
private:
Singleton() {} // 构造函数(被保护)
Singleton(Singleton const &); // 无需实现
Singleton& operator = (const Singleton &); // 无需实现
};
#endif // SINGLETON_H
这样以来,既可以保证只存在一个实例,又不用考虑内存回收的问题。
Singleton::GetInstance().doSomething(); // OK
Singleton single = Singleton::GetInstance(); // Error 不能编译通过
- 汉式/饿汉式
在讲解之前,先看看 Singleton 的头文件(懒汉式/饿汉式公用):
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
// 单例 - 懒汉式/饿汉式公用
class Singleton
{
public:
static Singleton* GetInstance();
private:
Singleton() {} // 构造函数(被保护)
private:
static Singleton *m_pSingleton; // 指向单例对象的指针
};
#endif // SINGLETON_H
懒汉式的特点:
- Lazy 初始化
- 非多线程安全
优点:第一次调用才初始化,避免内存浪费。
缺点:必须加锁(在“线程安全”部分分享如何加锁)才能保证单例,但加锁会影响效率。
// singleton.cpp
#include "singleton.h"
// 单例 - 懒汉式
Singleton *Singleton::m_pSingleton = NULL;
Singleton *Singleton::GetInstance()
{
if (m_pSingleton == NULL)
m_pSingleton = new Singleton();
return m_pSingleton;
}
饿汉式的特点:
- 非 Lazy 初始化
- 多线程安全
优点:没有加锁,执行效率会提高。
缺点:类加载时就初始化,浪费内存。
// singleton.cpp
#include "singleton.h"
// 单例 - 饿汉式
Singleton *Singleton::m_pSingleton = new Singleton();
Singleton *Singleton::GetInstance()
{
return m_pSingleton;
}
线程安全
在懒汉式下,如果使用多线程,会出现线程安全隐患。为了解决这个问题,可以引入双检锁 - DCL 机制。
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
#include <iostream>
#include <mutex>
using namespace std;
// 单例 - 懒汉式/饿汉式公用
class Singleton
{
public:
static Singleton* GetInstance();
private:
Singleton() {} // 构造函数(被保护)
private:
static Singleton *m_pSingleton; // 指向单例对象的指针
static mutex m_mutex; // 锁
};
#endif // SINGLETON_H
// singleton.cpp
#include "singleton.h"
// 单例 - 懒汉式(双检锁 DCL 机制)
Singleton *Singleton::m_pSingleton = NULL;
mutex Singleton::m_mutex;
Singleton *Singleton::GetInstance()
{
if (m_pSingleton == NULL) {
std::lock_guard<std::mutex> lock(m_mutex); // 自解锁
if (m_pSingleton == NULL) {
m_pSingleton = new Singleton();
}
}
return m_pSingleton;
}
这样,就可以保证线程安全了,但是,会带来较小的性能影响。
资源释放
有内存申请,就要有对应的释放,可以采用下述两种方式:
- 主动释放(手动调用接口来释放资源)
- 自动释放(由程序自己释放)
要手动释放资源,添加一个 static 接口,编写需要释放资源的代码:
// 单例 - 主动释放
static void DestoryInstance()
{
if (m_pSingleton != NULL) {
delete m_pSingleton;
m_pSingleton = NULL;
}
}
然后在需要释放的时候,手动调用该接口:
Singleton::GetInstance()->DestoryInstance();
方式虽然简单,但很多时候,容易忘记调用 DestoryInstance()。这时,可以采用更方便的方式:
// singleton.h
#ifndef SINGLETON_H
#define SINGLETON_H
#include <iostream>
using namespace std;
// 单例 - 自动释放
class Singleton
{
public:
static Singleton* GetInstance();
private:
Singleton() {} // 构造函数(被保护)
private:
static Singleton *m_pSingleton; // 指向单例对象的指针
// GC 机制
class GC
{
public:
~GC()
{
// 可以在这里销毁所有的资源,例如:db 连接、文件句柄等
if (m_pSingleton != NULL) {
cout << "Here destroy the m_pSingleton..." << endl;
delete m_pSingleton;
m_pSingleton = NULL;
}
}
static GC gc; // 用于释放单例
};
};
#endif // SINGLETON_H
只需要声明 Singleton::GC 即可:
// main.cpp
#include "singleton.h"
Singleton::GC Singleton::GC::gc; // 重要
int main()
{
Singleton *pSingleton1 = Singleton::GetInstance();
Singleton *pSingleton2 = Singleton::GetInstance();
cout << (pSingleton1 == pSingleton2) << endl;
return 0;
}
在程序运行结束时,系统会调用 Singleton 的静态成员 GC 的析构函数,该析构函数会进行资源的释放。这种方式的最大优点就是在“不知不觉”中进行,所以,对我们来说,尤为省心。
鸿蒙OS单例模式
https://gitee.com/openharmony/miscservices_time/blob/master/services/src/time_service.cpp
sptr<TimeService> TimeService::GetInstance()
{
if (instance_ == nullptr) {
std::lock_guard<std::mutex> autoLock(instanceLock_);
if (instance_ == nullptr) {
instance_ = new TimeService;
}
}
return instance_;
}