高级编程技术作业:numpy

本文通过具体实例展示了使用Python和NumPy进行矩阵运算的方法,包括矩阵加法、乘法等操作,并利用Scipy库中的Toeplitz矩阵进行进一步的计算演示。此外,还介绍了如何求解矩阵范数、奇异值分解等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高级编程技术作业:numpy

9-1:

from scipy.linalg import toeplitz
import numpy as np

n=200
m=500
a=[]

for i in range(0,200):
    a.append(np.random.randn(m))
a=np.array(a)

tempc=np.array(np.arange(m))
tempc=tempc+1

tempr=tempc[::-1].copy()
tempr[0]=tempc[0]

b=toeplitz(tempc,tempr)

aaT=np.dot(a,a.T)
print("A+A:{}".format(a+a))
print("A*AT:{}".format(aaT))
print("AT*A:{}".format(np.dot(a.T,a)))
print("AB:{}".format(np.dot(a,b)))

def f(h):
    I=np.identity(m)
    middle_result=b-h*I
    result=np.dot(a,middle_result)
    return result
print("A(B-hI):{}".format(f(1)))
A+A:[[ 0.12015074 -2.17239152  1.68280685 ...,  1.95190819  1.55648125
   0.82947276]
 [-3.08472847  1.28543219 -5.36366145 ...,  1.28522998  1.12766727
   2.84771714]
 [ 1.4260356   0.13409556  2.02240389 ...,  3.34307492 -0.87936923
   0.34896375]
 ..., 
 [ 1.57536357 -0.41172511  1.80751425 ...,  0.05224924  0.48591749
  -0.7948719 ]
 [ 0.58138821  0.32076284  1.36215523 ..., -2.38318338  3.92203896
  -4.24587598]
 [-0.96919767 -2.69219288  0.97390655 ..., -1.27553851  0.23401129
   0.03772576]]
A*AT:[[ 509.68526269   15.36142757  -15.42900615 ...,  -15.4049474   -19.92890346
   -10.40270801]
 [  15.36142757  532.61728676   17.43766784 ...,   15.25493886
   -10.64694532    4.80526476]
 [ -15.42900615   17.43766784  497.0522759  ...,   -3.8078216   -10.12014835
     0.79007332]
 ..., 
 [ -15.4049474    15.25493886   -3.8078216  ...,  500.27227123
    30.15560551  -23.86353863]
 [ -19.92890346  -10.64694532  -10.12014835 ...,   30.15560551
   502.28832013  -15.57048061]
 [ -10.40270801    4.80526476    0.79007332 ...,  -23.86353863
   -15.57048061  523.3898338 ]]
AT*A:[[ 233.60379811    3.57918385   21.6033735  ...,    0.37559337
     9.98228985    1.59369899]
 [   3.57918385  232.94868505    3.5093339  ...,    1.50603446    2.846088
    -9.54908034]
 [  21.6033735     3.5093339   191.12576407 ...,   -0.81504122
    10.64750087   -6.09910474]
 ..., 
 [   0.37559337    1.50603446   -0.81504122 ...,  192.72489639  -10.4016765
   -11.81193785]
 [   9.98228985    2.846088     10.64750087 ...,  -10.4016765   224.96811397
   -25.14876335]
 [   1.59369899   -9.54908034   -6.09910474 ...,  -11.81193785
   -25.14876335  193.60623918]]
AB:[[ 2315.79208166  2350.65818368  1813.53499204 ...,  1223.71847665
   1715.60806256  2108.83862788]
 [ 4170.01082014  3414.14582566  3748.63591493 ...,  2829.93801139
   3164.37764934  3459.50539325]
 [-2005.79407508 -1644.96671608 -1606.47839682 ..., -2717.61805433
  -1878.48938458 -2092.8605305 ]
 ..., 
 [ 4794.96633385  5177.24958855  5063.75421608 ...,  4880.55418843
   4882.82041623  4993.28687279]
 [-2968.33170042 -2813.47513681 -2723.64460161 ..., -2312.53052529
  -2897.3345712  -1908.98564462]
 [-5250.4088754  -5473.87133993 -6127.22110847 ..., -5036.66511911
  -5336.55962369 -5259.82145199]]
A(B-hI):[[ 2315.73200629  2351.74437944  1812.69358862 ...,  1222.74252255
   1714.82982194  2108.4238915 ]
 [ 4171.55318438  3413.50310957  3751.31774565 ...,  2829.2953964
   3163.81381571  3458.08153467]
 [-2006.50709288 -1645.03376386 -1607.48959877 ..., -2719.28959179
  -1878.04969996 -2093.03501238]
 ..., 
 [ 4794.17865206  5177.45545111  5062.85045895 ...,  4880.52806381
   4882.57745749  4993.68430874]
 [-2968.62239453 -2813.63551823 -2724.32567922 ..., -2311.33893361
  -2899.29559068 -1906.86270663]
 [-5249.92427656 -5472.52524349 -6127.70806174 ..., -5036.02734986
  -5336.67662934 -5259.84031487]]

9-2:

import numpy as np
from scipy.linalg import toeplitz

m=500
tempc=np.array(np.arange(m))
tempc=tempc+1

tempr=tempc[::-1].copy()
tempr[0]=tempc[0]

b=toeplitz(tempc,tempr)

B=np.random.rand(m)
solution=np.linalg.lstsq(b,B)[0]
print("Bx=b solution:{}".format(solution))
Bx=b solution:[ -1.27741366e-04  -1.29285154e-03   8.44475726e-04   1.10953414e-04
   3.09166777e-05  -9.73453255e-04   1.63550627e-03  -3.61778157e-04
   1.72497077e-04  -3.87562529e-04  -2.52077829e-04   1.06328097e-03
  -5.46535586e-05  -2.22934478e-04  -6.61901680e-04   7.06868302e-04
  -1.46600100e-03   8.31671582e-05   6.26586199e-04   9.91738551e-04
   4.87084815e-05  -1.00348981e-03   2.22639192e-05  -8.10010592e-04
  -7.52311972e-05   4.22645818e-04   1.02921461e-03  -8.92650502e-04
  -8.46660528e-05   2.56447508e-04   7.41000347e-04  -9.36001321e-04
   9.95452457e-04   4.23484912e-04  -2.42981058e-04  -1.02655643e-04
   1.30431745e-04  -9.14289407e-04   1.60889376e-05  -4.32095056e-04
   1.14681737e-03   2.57317374e-04  -7.85755674e-04  -5.32618734e-04
  -3.94717304e-04   1.89443312e-03  -7.72194208e-04  -1.04749066e-03
   1.57138219e-03   2.78474662e-04  -9.28957967e-04  -4.83731895e-04
   1.38545338e-04   5.14314900e-05   1.06121406e-03  -3.26937203e-04
  -1.49646578e-04  -9.40013556e-04  -3.58249974e-04   2.33161676e-04
   1.56581687e-04   1.06624807e-03  -2.56316571e-04  -1.10408522e-03
   2.99000899e-04   6.28142627e-04  -6.87725746e-04   1.37557027e-03
  -1.24189841e-03  -2.03489732e-04   4.65904768e-04  -1.13357912e-04
  -9.07411063e-05   5.58068762e-04   4.93478545e-04   2.98684507e-04
  -9.47608140e-04   7.59766201e-04  -1.44499788e-03   6.19155937e-04
   1.15323788e-03  -3.81238195e-04   3.18022765e-04  -1.28798347e-03
   5.41567380e-04   6.14492752e-04  -1.52762384e-03   1.68390001e-03
  -2.04907386e-04  -1.28738727e-03   4.92647044e-04  -4.92774123e-05
  -9.41433662e-05   9.21538207e-04  -3.55276395e-04  -4.12245608e-04
  -7.82676100e-04   6.68193771e-04  -3.02698385e-04  -2.11343501e-04
   1.17212974e-03   5.86553848e-04  -1.64784478e-03   1.24936872e-03
  -1.07813970e-03   4.87797069e-04   9.77703325e-05   4.91552484e-04
  -4.97839975e-04  -4.43095369e-04   1.61299932e-04   1.24666325e-04
  -4.19468275e-04   3.19127365e-04  -1.97449623e-04   5.23145299e-05
   9.90281029e-05   1.48378292e-04   8.09103905e-04  -5.78305292e-04
   6.09363634e-04  -1.55485417e-05   7.73577166e-05  -8.25801303e-04
   5.82342012e-04   4.21620699e-04  -2.45496161e-04  -6.18896955e-04
   2.75205725e-04  -6.87413630e-04   1.33133096e-03  -6.47963833e-04
  -2.36081085e-05  -1.21250259e-03   1.33968487e-03  -1.05596093e-04
  -1.25900581e-05   6.96679846e-05  -2.52044384e-04   8.49860551e-04
  -1.00826955e-03   4.01618475e-04  -2.60349831e-05  -9.55439199e-04
   1.39727078e-03  -3.95874177e-05  -1.08055982e-04  -1.48719318e-03
   1.61851404e-03  -6.77344646e-04   5.70367031e-04   2.81944793e-04
  -1.17412224e-03  -4.93519721e-04   7.34873768e-04  -3.88893744e-04
   2.09198754e-04   2.23726773e-04  -8.23452542e-04   1.21074576e-03
  -6.70606987e-04   1.22921670e-03  -1.81442261e-03   9.75494755e-05
   9.17334118e-04  -5.26286675e-04  -3.61623343e-04   9.38770325e-04
  -1.01241865e-03   6.71240263e-04   2.08102149e-04   5.70766958e-04
  -1.27100701e-04  -1.01555804e-03  -2.26478307e-04   1.90176962e-04
   1.42713492e-03  -5.83703664e-04  -8.17763671e-04   1.19026114e-03
  -4.25994397e-04  -3.46579829e-04   4.53734409e-04   1.02721617e-04
   4.12155900e-04  -5.69666163e-04  -7.94168421e-04   1.28435187e-03
  -1.54675644e-03   9.36584222e-05  -1.15372769e-07   4.84503674e-04
  -5.51222520e-04   3.31803616e-05   9.30680485e-04  -6.61798188e-04
  -1.91626465e-05  -1.41455859e-04   1.76907918e-03   1.37795574e-05
  -1.23640978e-03   1.79446494e-04   8.60365796e-04  -8.64036159e-05
  -9.99932958e-04   9.01997543e-04  -1.41668128e-03   1.59834697e-03
  -1.37520942e-03   1.10458434e-03  -4.00822223e-04   5.32289712e-04
  -1.12468061e-05  -3.76945779e-04  -1.06632221e-03   1.58862289e-03
   1.83360057e-05  -9.69678806e-04   6.60937438e-04  -8.95450958e-04
   1.44260810e-03  -8.34914142e-04  -1.94379108e-04  -2.15211241e-04
  -2.76253675e-05  -9.08671392e-05   1.34414268e-03  -1.00749748e-03
   4.82426886e-04   3.82958932e-04  -9.80560994e-04   7.28614281e-04
  -2.17377379e-04  -1.10127717e-04  -7.19565551e-04  -3.82808565e-05
   7.06697649e-04  -8.55768189e-04   5.86623506e-04   1.13451522e-03
  -1.40568549e-03   5.46368656e-04  -4.76145065e-04  -3.27867663e-04
   7.83488498e-04   3.14625627e-05   4.96011629e-04  -3.20228182e-04
   8.40606015e-04  -8.15234991e-04  -6.38791412e-04   8.77789248e-05
  -3.02712389e-04   4.68526313e-04   2.96479344e-04  -3.14741486e-04
   2.07061926e-04   9.61626996e-04  -1.79532758e-03   9.91370539e-05
   1.24061470e-03  -4.02930889e-04   4.80454279e-04  -8.97631469e-04
   6.64471254e-04  -5.51395702e-04  -4.84251458e-04  -1.53180058e-06
   6.13520080e-04   6.92333619e-04  -8.83823085e-04   6.75860157e-04
  -1.09625814e-03   5.14856117e-04  -2.15946168e-04  -3.54419942e-04
   1.59607501e-04   9.29665526e-04   7.75601767e-04  -8.65762070e-04
  -7.47447300e-04   7.88402532e-04   8.53791528e-04  -1.78408112e-03
   9.53104629e-04  -5.36252366e-04  -7.36357281e-07   9.23468239e-04
  -7.10978830e-04   4.93912486e-04   2.67848490e-04  -1.55030533e-03
   5.01292111e-04   1.23497775e-03  -8.51106317e-04  -1.48353912e-04
  -2.02346163e-04  -2.40904024e-04  -5.04512771e-05   1.28549674e-04
   1.11194255e-03  -1.57330925e-05  -2.97269046e-04  -8.88558777e-04
   1.93310159e-04  -2.01287096e-04   4.48148867e-04   2.45565779e-05
  -3.43346682e-04   6.13872001e-04  -5.14400121e-04   5.82123670e-04
  -6.52937246e-05   3.99422486e-04  -1.96708835e-04  -6.67096003e-04
  -1.54655180e-04   8.25037900e-04   6.91647399e-04  -1.37336127e-03
   1.14779418e-03  -6.06526562e-04  -2.33263664e-04  -1.53181339e-04
  -5.60284410e-04   7.61110308e-04   1.00272896e-03  -4.95159101e-04
  -4.21111584e-04  -6.25741024e-04   1.71891619e-03  -1.33796041e-03
   1.32710066e-04   1.73624265e-04   6.68666160e-04  -1.41133328e-03
   1.82751951e-03  -1.13244708e-03  -5.88687610e-04   1.65327334e-03
  -4.38502932e-04  -1.08295052e-03   6.34743975e-04  -1.02915096e-04
  -5.91824279e-04  -9.41584841e-05   7.11280255e-04  -6.41128806e-04
   1.24085642e-03  -1.42283661e-03   1.80793978e-03  -1.74748927e-03
   1.49030118e-03  -1.29306090e-03   9.77798070e-04  -5.28566727e-04
   6.44763849e-04   3.04692934e-04  -1.59921008e-03   8.24321699e-04
   8.28950681e-04  -4.10028597e-04   3.66710666e-04  -9.32239843e-04
   9.63526227e-04  -2.12286785e-04   5.01443360e-04  -3.95079352e-04
   3.54144923e-04  -2.85023915e-04  -9.95847054e-04  -6.00572768e-04
   7.27338818e-04   6.12124715e-04  -1.30590118e-03  -3.15266870e-05
   8.57448086e-04  -5.11448790e-04   5.96964583e-05   1.58613883e-03
  -1.61588592e-03   2.22561984e-04  -3.56103711e-04   5.03113051e-05
   1.58409594e-03  -4.91104641e-04  -8.90494727e-04   1.73619074e-04
  -4.42909519e-04   1.31841637e-04   6.45154929e-04  -7.09883570e-04
   8.03736368e-04   8.33951203e-05  -7.33699797e-04  -1.33810277e-05
   4.04664699e-05   3.91976188e-04  -5.43127294e-04   6.30933220e-04
  -4.21645448e-04   1.29593537e-03  -6.68621426e-04  -4.51970966e-04
   1.33961472e-03  -1.93024212e-03   6.24042355e-04  -2.78366439e-04
   1.31074852e-04   1.19738602e-03  -2.58439680e-04   4.34226610e-04
  -1.34587035e-03   1.18987418e-03   8.74817523e-05  -1.28651835e-03
   9.16400343e-04   5.77884207e-04  -1.19903038e-03  -2.58506993e-04
  -2.59540847e-04   1.52293133e-03  -1.23396534e-03  -3.31552608e-04
   7.18720296e-04  -3.04288842e-04   1.44179766e-03  -6.50594913e-04
  -8.96487216e-04   1.28297895e-03  -1.29671726e-04  -3.65349056e-04
  -2.56657393e-04   3.07069657e-04  -5.94618094e-04   1.53558184e-04
  -5.07372530e-04   7.44529017e-04   3.10130539e-04  -1.19692599e-03
   1.25603130e-05   1.19033142e-03   6.03248906e-04  -1.52685172e-03
   1.42897036e-03  -1.53366395e-03   1.43922111e-03  -7.77769271e-04
   5.31733954e-04  -1.64286352e-04  -4.98116045e-04   8.38346965e-04
  -2.91548212e-04  -7.14972339e-04  -1.00717837e-04  -5.22962305e-06
   8.11961810e-04  -1.61543111e-04  -1.04758973e-03   1.39468555e-03
  -1.78156864e-04  -4.33526543e-04   5.61570779e-04  -5.86793839e-04
   8.52440803e-04  -1.04423155e-03   2.40517002e-04  -7.55115435e-04
   2.13670017e-04   3.23437730e-04  -5.71245047e-05   1.37958254e-03
  -1.85276839e-03   9.72395044e-04  -1.00918553e-03   1.57522717e-03
  -7.32664045e-04   1.43163911e-05   9.33182791e-05  -1.15448435e-04
   6.49862851e-05  -4.14772790e-04   3.90624131e-04  -2.53343433e-04
   4.94844660e-04  -7.96407015e-04   1.33510777e-03  -1.61581723e-03
   1.38128533e-03  -7.28241844e-04   9.32374550e-05   1.14977103e-03
  -4.65535935e-04  -7.41093662e-04   5.15444067e-04  -9.53301282e-04
   9.21970001e-04   7.67769324e-04  -7.14181923e-04   3.22659455e-04]

9-3:

import numpy as np
from scipy.linalg import toeplitz

A=np.random.random_integers(100,size=(200,500))
B=toeplitz(np.arange(1,501),np.arange(1,501))

print("||A||F:")
print(np.linalg.norm(A,ord='fro'))
print("||B||infinite:")
print(np.linalg.norm(B,ord=np.inf))

print("the smallest singular values of B:")
print(np.linalg.svd(B)[1])
print("the largest singular values of B:")
print(np.linalg.svd(B)[-1])
||A||F:
18358.9712947
||B||infinite:
125250.0
the smallest singular values of B:
[  8.73345205e+04   5.06607585e+04   1.59461688e+04   5.62912132e+03
   3.33547670e+03   2.02659035e+03   1.43974746e+03   1.03405631e+03
   8.01860245e+02   6.25606099e+02   5.10897416e+02   4.18849284e+02
   3.53959934e+02   2.99933538e+02   2.59707894e+02   2.25324927e+02
   1.98685391e+02   1.75462927e+02   1.56916879e+02   1.40500835e+02
   1.27074128e+02   1.15043437e+02   1.05012104e+02   9.59335551e+01
   8.82425029e+01   8.12238194e+01   7.51980117e+01   6.96601740e+01
   6.48514707e+01   6.04054595e+01   5.65069030e+01   5.28835201e+01
   4.96791454e+01   4.66873119e+01   4.40216017e+01   4.15226556e+01
   3.92813199e+01   3.71726635e+01   3.52701886e+01   3.34745922e+01
   3.18459652e+01   3.03043965e+01   2.88994789e+01   2.75661906e+01
   2.63458139e+01   2.51849112e+01   2.41181182e+01   2.31011179e+01
   2.21631804e+01   2.12672479e+01   2.04382212e+01   1.96448776e+01
   1.89085316e+01   1.82026934e+01   1.75457122e+01   1.69149697e+01
   1.63263457e+01   1.57604132e+01   1.52309830e+01   1.47212774e+01
   1.42433633e+01   1.37826768e+01   1.33498064e+01   1.29320501e+01
   1.25387366e+01   1.21587385e+01   1.18003059e+01   1.14536500e+01
   1.11260931e+01   1.08089908e+01   1.05088634e+01   1.02180490e+01
   9.94237267e+00   9.67501965e+00   9.42120939e+00   9.17486109e+00
   8.94066479e+00   8.71317789e+00   8.49662610e+00   8.28612385e+00
   8.08548825e+00   7.89032168e+00   7.70408052e+00   7.52279602e+00
   7.34960518e+00   7.18091739e+00   7.01958606e+00   6.86235503e+00
   6.71182521e+00   6.56503710e+00   6.42436619e+00   6.28711687e+00
   6.15546293e+00   6.02694407e+00   5.90355315e+00   5.78304026e+00
   5.66723561e+00   5.55407784e+00   5.44525062e+00   5.33886196e+00
   5.23646321e+00   5.13631486e+00   5.03984857e+00   4.94546242e+00
   4.85447954e+00   4.76542238e+00   4.67951555e+00   4.59539417e+00
   4.51419320e+00   4.43464998e+00   4.35781782e+00   4.28252699e+00
   4.20975623e+00   4.13842049e+00   4.06943032e+00   4.00177790e+00
   3.93631139e+00   3.87209349e+00   3.80991514e+00   3.74890363e+00
   3.68979733e+00   3.63178271e+00   3.57554981e+00   3.52033943e+00
   3.46679711e+00   3.41421356e+00   3.36319330e+00   3.31307300e+00
   3.26441928e+00   3.21661118e+00   3.17018031e+00   3.12454478e+00
   3.08020380e+00   3.03661161e+00   2.99423737e+00   2.95256874e+00
   2.91204706e+00   2.87219088e+00   2.83341572e+00   2.79526881e+00
   2.75814163e+00   2.72160804e+00   2.68603716e+00   2.65102759e+00
   2.61692763e+00   2.58335888e+00   2.55065024e+00   2.51844472e+00
   2.48705312e+00   2.45613840e+00   2.42599446e+00   2.39630287e+00
   2.36734171e+00   2.33880995e+00   2.31097089e+00   2.28353972e+00
   2.25676590e+00   2.23037981e+00   2.20461795e+00   2.17922491e+00
   2.15442502e+00   2.12997619e+00   2.10609133e+00   2.08254085e+00
   2.05952692e+00   2.03683168e+00   2.01464722e+00   1.99276668e+00
   1.97137266e+00   1.95026864e+00   1.92962831e+00   1.90926487e+00
   1.88934361e+00   1.86968686e+00   1.85045199e+00   1.83146996e+00
   1.81289067e+00   1.79455320e+00   1.77660038e+00   1.75887896e+00
   1.74152511e+00   1.72439281e+00   1.70761193e+00   1.69104327e+00
   1.67481075e+00   1.65878162e+00   1.64307418e+00   1.62756176e+00
   1.61235734e+00   1.59734000e+00   1.58261768e+00   1.56807491e+00
   1.55381487e+00   1.53972724e+00   1.52591066e+00   1.51225971e+00
   1.49886872e+00   1.48563693e+00   1.47265458e+00   1.45982529e+00
   1.44723544e+00   1.43479283e+00   1.42258016e+00   1.41050919e+00
   1.39865911e+00   1.38694544e+00   1.37544407e+00   1.36407409e+00
   1.35290821e+00   1.34186892e+00   1.33102593e+00   1.32030497e+00
   1.30977288e+00   1.29935845e+00   1.28912580e+00   1.27900666e+00
   1.26906254e+00   1.25922795e+00   1.24956193e+00   1.24000166e+00
   1.23060380e+00   1.22130806e+00   1.21216885e+00   1.20312829e+00
   1.19423865e+00   1.18544435e+00   1.17679560e+00   1.16823901e+00
   1.15982284e+00   1.15149581e+00   1.14330427e+00   1.13519897e+00
   1.12722447e+00   1.11933343e+00   1.11156869e+00   1.10388473e+00
   1.09632277e+00   1.08883904e+00   1.08147319e+00   1.07418311e+00
   1.06700696e+00   1.05990423e+00   1.05291164e+00   1.04599022e+00
   1.03917530e+00   1.03242939e+00   1.02578649e+00   1.01921053e+00
   1.01273423e+00   1.00632287e+00   1.00000797e+00   9.93756087e-01
   9.87597580e-01   9.81500252e-01   9.75493337e-01   9.69545830e-01
   9.63685892e-01   9.57883658e-01   9.52166261e-01   9.46504929e-01
   9.40925806e-01   9.35401171e-01   9.29956221e-01   9.24564238e-01
   9.19249512e-01   9.13986292e-01   9.08797990e-01   9.03659787e-01
   8.98594253e-01   8.93577462e-01   8.88631175e-01   8.83732323e-01
   8.78901891e-01   8.74117635e-01   8.69399791e-01   8.64726909e-01
   8.60118504e-01   8.55553890e-01   8.51051889e-01   8.46592550e-01
   8.42194029e-01   8.37837079e-01   8.33539215e-01   8.29281871e-01
   8.25081943e-01   8.20921519e-01   8.16816901e-01   8.12750807e-01
   8.08738966e-01   8.04764702e-01   8.00843191e-01   7.96958344e-01
   7.93124803e-01   7.89327042e-01   7.85579191e-01   7.81866266e-01
   7.78201901e-01   7.74571639e-01   7.70988635e-01   7.67438935e-01
   7.63935236e-01   7.60464069e-01   7.57037688e-01   7.53643094e-01
   7.50292110e-01   7.46972193e-01   7.43694751e-01   7.40447677e-01
   7.37241981e-01   7.34065978e-01   7.30930293e-01   7.27823647e-01
   7.24756293e-01   7.21717345e-01   7.18716697e-01   7.15743843e-01
   7.12808328e-01   7.09900016e-01   7.07028114e-01   7.04182839e-01
   7.01373077e-01   6.98589386e-01   6.95840338e-01   6.93116822e-01
   6.90427108e-01   6.87762403e-01   6.85130685e-01   6.82523471e-01
   6.79948456e-01   6.77397454e-01   6.74877886e-01   6.72381856e-01
   6.69916521e-01   6.67474264e-01   6.65061985e-01   6.62672336e-01
   6.60311972e-01   6.57973805e-01   6.55664251e-01   6.53376473e-01
   6.51116657e-01   6.48878210e-01   6.46667093e-01   6.44476951e-01
   6.42313527e-01   6.40170694e-01   6.38053986e-01   6.35957498e-01
   6.33886560e-01   6.31835481e-01   6.29809395e-01   6.27802818e-01
   6.25820694e-01   6.23857739e-01   6.21918714e-01   6.19998529e-01
   6.18101765e-01   6.16223521e-01   6.14368207e-01   6.12531102e-01
   6.10716449e-01   6.08919704e-01   6.07144949e-01   6.05387809e-01
   6.03652210e-01   6.01933942e-01   6.00236779e-01   5.98556673e-01
   5.96897249e-01   5.95254614e-01   5.93632252e-01   5.92026419e-01
   5.90440463e-01   5.88870783e-01   5.87320594e-01   5.85786438e-01
   5.84271398e-01   5.82772154e-01   5.81291664e-01   5.79826739e-01
   5.78380217e-01   5.76949035e-01   5.75535916e-01   5.74137921e-01
   5.72757657e-01   5.71392306e-01   5.70044366e-01   5.68711135e-01
   5.67395003e-01   5.66093382e-01   5.64808559e-01   5.63538053e-01
   5.62284054e-01   5.61044185e-01   5.59820539e-01   5.58610843e-01
   5.57417094e-01   5.56237119e-01   5.55072826e-01   5.53922136e-01
   5.52786870e-01   5.51665041e-01   5.50558386e-01   5.49465008e-01
   5.48386562e-01   5.47321237e-01   5.46270609e-01   5.45232953e-01
   5.44209766e-01   5.43199404e-01   5.42203292e-01   5.41219863e-01
   5.40250471e-01   5.39293626e-01   5.38350611e-01   5.37420011e-01
   5.36503041e-01   5.35598357e-01   5.34707111e-01   5.33828027e-01
   5.32962194e-01   5.32108403e-01   5.31267683e-01   5.30438888e-01
   5.29622990e-01   5.28818905e-01   5.28027550e-01   5.27247898e-01
   5.26480813e-01   5.25725328e-01   5.24982253e-01   5.24250677e-01
   5.23531359e-01   5.22823442e-01   5.22127640e-01   5.21443143e-01
   5.20770621e-01   5.20109314e-01   5.19459846e-01   5.18821507e-01
   5.18194878e-01   5.17579293e-01   5.16975292e-01   5.16382256e-01
   5.15800685e-01   5.15230001e-01   5.14670666e-01   5.14122145e-01
   5.13584863e-01   5.13058323e-01   5.12542918e-01   5.12038186e-01
   5.11544489e-01   5.11061400e-01   5.10589249e-01   5.10127644e-01
   5.09676886e-01   5.09236616e-01   5.08807104e-01   5.08388024e-01
   5.07979621e-01   5.07581595e-01   5.07194167e-01   5.06817067e-01
   5.06450490e-01   5.06094193e-01   5.05748350e-01   5.05412742e-01
   5.05087521e-01   5.04772493e-01   5.04467791e-01   5.04173242e-01
   5.03888962e-01   5.03614797e-01   5.03350847e-01   5.03096979e-01
   5.02853276e-01   5.02619624e-01   5.02396090e-01   5.02182578e-01
   5.01979144e-01   5.01785704e-01   5.01602303e-01   5.01428874e-01
   5.01265450e-01   5.01111976e-01   5.00968478e-01   5.00834910e-01
   5.00711291e-01   5.00597587e-01   5.00493809e-01   5.00399932e-01
   5.00315963e-01   5.00241883e-01   5.00177696e-01   5.00123390e-01
   5.00078966e-01   5.00044416e-01   5.00019740e-01   5.00004935e-01]
the largest singular values of B:
[[-0.06303255 -0.06278237 -0.06253362 ..., -0.06253362 -0.06278237
  -0.06303255]
 [ 0.06324524  0.06324274  0.06323775 ..., -0.06323775 -0.06324274
  -0.06324524]
 [ 0.06313468  0.06287473  0.06260689 ...,  0.06260689  0.06287473
   0.06313468]
 ..., 
 [-0.00059607  0.00178799 -0.00297927 ...,  0.00297927 -0.00178799
   0.00059607]
 [-0.00039659  0.0011913  -0.00198581 ..., -0.00198581  0.0011913
  -0.00039659]
 [-0.00019869  0.00059607 -0.00099342 ...,  0.00099342 -0.00059607
   0.00019869]]

9-4:

import numpy as np

n=200
Z=np.random.random_integers(100,size=(n,n))
print("the eigenvalue of Z:")
print(np.linalg.eig(Z)[0])
print("the eigenvector of Z:")
print(np.linalg.eig(Z)[1])
the eigenvalue of Z:
[  1.00953977e+04  +0.j           3.76394004e+02+145.86474271j
   3.76394004e+02-145.86474271j   2.99660982e+02+264.91643692j
   2.99660982e+02-264.91643692j   2.39707874e+02+310.92800591j
   2.39707874e+02-310.92800591j  -3.95778749e+02+169.9267468j
  -3.95778749e+02-169.9267468j   -3.99377202e+02+121.21356662j
  -3.99377202e+02-121.21356662j  -2.77303005e+02+304.56987479j
  -2.77303005e+02-304.56987479j  -3.35357147e+02+222.80778212j
  -3.35357147e+02-222.80778212j  -2.24615661e+02+337.4527546j
  -2.24615661e+02-337.4527546j   -3.90331372e+02  +0.j
  -1.87677675e+02+346.28323083j  -1.87677675e+02-346.28323083j
   9.70351984e+01+388.73473397j   9.70351984e+01-388.73473397j
  -1.44267559e+02+359.64675285j  -1.44267559e+02-359.64675285j
   3.23424909e+02+193.55079537j   3.23424909e+02-193.55079537j
   3.78317084e+02 +54.40259726j   3.78317084e+02 -54.40259726j
   2.86761863e+02+228.52631687j   2.86761863e+02-228.52631687j
   8.23631128e+01+359.74986273j   8.23631128e+01-359.74986273j
  -1.19535252e+02+348.26882023j  -1.19535252e+02-348.26882023j
  -3.51470542e+02+103.61207199j  -3.51470542e+02-103.61207199j
  -2.38799418e+02+268.48215183j  -2.38799418e+02-268.48215183j
  -3.38335332e+02+127.36083531j  -3.38335332e+02-127.36083531j
  -2.67690078e+02+228.85895776j  -2.67690078e+02-228.85895776j
   1.71342114e+02+312.40630866j   1.71342114e+02-312.40630866j
   3.32054720e+02+145.55741066j   3.32054720e+02-145.55741066j
  -2.98592115e+01+363.4765729j   -2.98592115e+01-363.4765729j
   3.41762900e+01+358.9746905j    3.41762900e+01-358.9746905j
  -3.55864503e+02 +22.17723313j  -3.55864503e+02 -22.17723313j
   2.28597623e+02+254.01856223j   2.28597623e+02-254.01856223j
   3.58405529e+02 +36.10881532j   3.58405529e+02 -36.10881532j
   8.77565933e+01+337.60044235j   8.77565933e+01-337.60044235j
   2.00075139e+02+268.2336093j    2.00075139e+02-268.2336093j
  -1.67867528e+02+292.74568935j  -1.67867528e+02-292.74568935j
  -1.15805851e+01+332.8745454j   -1.15805851e+01-332.8745454j
   3.32611158e+02 +64.56439402j   3.32611158e+02 -64.56439402j
  -1.46767638e+02+296.09903826j  -1.46767638e+02-296.09903826j
  -5.98845648e+01+327.43856068j  -5.98845648e+01-327.43856068j
   3.18590427e+02 +95.32857314j   3.18590427e+02 -95.32857314j
   2.57266468e+02+191.66279837j   2.57266468e+02-191.66279837j
  -3.06673071e+02 +90.73210675j  -3.06673071e+02 -90.73210675j
  -2.88351832e+02+114.82841358j  -2.88351832e+02-114.82841358j
   5.00062033e+01+311.92522607j   5.00062033e+01-311.92522607j
  -3.07444599e+02 +17.39823939j  -3.07444599e+02 -17.39823939j
  -1.77581065e+02+242.56133459j  -1.77581065e+02-242.56133459j
   3.15669687e+02  +0.j           3.05582244e+02 +55.17703935j
   3.05582244e+02 -55.17703935j   2.71265253e+02+131.71574732j
   2.71265253e+02-131.71574732j   1.50529202e+02+258.76830701j
   1.50529202e+02-258.76830701j  -2.39782995e+02+169.18651151j
  -2.39782995e+02-169.18651151j  -6.37238062e+01+294.68846496j
  -6.37238062e+01-294.68846496j  -3.72157039e+01+299.54291491j
  -3.72157039e+01-299.54291491j   1.41649856e+02+249.32837899j
   1.41649856e+02-249.32837899j   9.80456068e+01+271.48938742j
   9.80456068e+01-271.48938742j  -1.10048623e+02+257.47854487j
  -1.10048623e+02-257.47854487j  -1.92293467e+02+193.02001322j
  -1.92293467e+02-193.02001322j   2.93556909e+02  +0.j
  -2.64590532e+02 +65.81440207j  -2.64590532e+02 -65.81440207j
  -1.42862552e+02+224.0946205j   -1.42862552e+02-224.0946205j
  -5.96486593e+00+278.2678789j   -5.96486593e+00-278.2678789j
   1.90628179e+02+182.02235668j   1.90628179e+02-182.02235668j
  -2.18355197e+02+132.60256105j  -2.18355197e+02-132.60256105j
   2.55978678e+02 +90.22565434j   2.55978678e+02 -90.22565434j
  -1.06467326e+01+256.48345999j  -1.06467326e+01-256.48345999j
  -2.24751373e+02+103.90242008j  -2.24751373e+02-103.90242008j
   2.60853213e+02  +0.j          -5.33737677e+01+236.33566582j
  -5.33737677e+01-236.33566582j   3.78960279e+01+243.92091778j
   3.78960279e+01-243.92091778j   7.14742503e+01+231.70012294j
   7.14742503e+01-231.70012294j   1.30974811e+02+198.81631568j
   1.30974811e+02-198.81631568j  -2.38230531e+02  +0.j
   1.78074484e+02+143.21367086j   1.78074484e+02-143.21367086j
   1.43746715e+02+175.32978555j   1.43746715e+02-175.32978555j
  -1.34860398e+02+178.45230449j  -1.34860398e+02-178.45230449j
   2.20332073e+02 +70.12296359j   2.20332073e+02 -70.12296359j
   2.24010820e+02 +41.48166679j   2.24010820e+02 -41.48166679j
  -1.00442922e+02+198.43348444j  -1.00442922e+02-198.43348444j
   1.77893987e+01+229.74463914j   1.77893987e+01-229.74463914j
  -1.88229580e+02+110.17631474j  -1.88229580e+02-110.17631474j
   1.95206380e+02 +93.7818983j    1.95206380e+02 -93.7818983j
  -2.13831621e+02  +0.j           1.54031114e+02+118.17026546j
   1.54031114e+02-118.17026546j  -2.05197703e+02  +0.j
   2.06724025e+02  +0.j          -1.73443014e+02 +83.30223017j
  -1.73443014e+02 -83.30223017j  -1.87464950e+02 +52.29053798j
  -1.87464950e+02 -52.29053798j  -1.11473259e+02+148.74466409j
  -1.11473259e+02-148.74466409j   7.45282627e+01+174.08464203j
   7.45282627e+01-174.08464203j   1.67495180e+02 +58.93861552j
   1.67495180e+02 -58.93861552j   9.68119879e+01+135.30932713j
   9.68119879e+01-135.30932713j   2.75166879e-01+170.23628754j
   2.75166879e-01-170.23628754j   3.59408922e+01+155.34028236j
   3.59408922e+01-155.34028236j   1.42060143e+02 +48.8987879j
   1.42060143e+02 -48.8987879j   -1.50518140e+02 +20.63323419j
  -1.50518140e+02 -20.63323419j  -7.77111776e+01+114.82202834j
  -7.77111776e+01-114.82202834j  -9.94688062e+01 +64.65591422j
  -9.94688062e+01 -64.65591422j   9.31717700e+01 +79.1576633j
   9.31717700e+01 -79.1576633j   -7.35927221e+00+122.52268794j
  -7.35927221e+00-122.52268794j   6.45428027e+00 +99.4276397j
   6.45428027e+00 -99.4276397j    7.07434890e+01 +66.41615668j
   7.07434890e+01 -66.41615668j   9.54164871e+01  +0.j
   1.58250159e+01 +76.04140323j   1.58250159e+01 -76.04140323j
  -4.68322604e+01 +50.39196903j  -4.68322604e+01 -50.39196903j
  -1.08421393e+02  +0.j          -7.15660757e+01  +7.43959481j
  -7.15660757e+01  -7.43959481j   7.40860385e+01  +0.j
  -7.86592829e+00 +24.20825988j  -7.86592829e+00 -24.20825988j
  -3.22050398e+01  +0.j           5.02316762e+01  +0.j        ]
the eigenvector of Z:
[[-0.07067350+0.j          0.07158291+0.04231717j  0.07158291-0.04231717j
  ...,  0.01610133-0.03268252j  0.00049605+0.j         -0.01650962+0.j        ]
 [-0.06926030+0.j          0.01495462+0.03465972j  0.01495462-0.03465972j
  ...,  0.02832088-0.00042045j -0.03861504+0.j          0.05968802+0.j        ]
 [-0.06473734+0.j         -0.03015797+0.05124203j -0.03015797-0.05124203j
  ...,  0.09013863-0.01350993j -0.00385757+0.j         -0.10789813+0.j        ]
 ..., 
 [-0.07441188+0.j          0.05929417-0.00126856j  0.05929417+0.00126856j
  ..., -0.00963757+0.01569466j  0.07321008+0.j          0.02606904+0.j        ]
 [-0.07193039+0.j         -0.03463707-0.00441045j -0.03463707+0.00441045j
  ...,  0.00806795-0.00191516j  0.17979334+0.j         -0.00138131+0.j        ]
 [-0.07187790+0.j          0.03261974-0.05103739j  0.03261974+0.05103739j
  ...,  0.00440189-0.0116803j   0.03180158+0.j         -0.04488606+0.j        ]]
9-5:
import numpy as np
import scipy.linalg as LA
n=200
C=np.zeros((n,n))

p=0.6

for i in range(0,len(C)):
    for j in range(0,len(C[i])):
        if np.random.rand()<p:
            C[i][j]=1

print("the singular value of Z:")
print(LA.svd(C)[1])

the singular value of Z:
[  1.21113729e+02   1.34666813e+01   1.33159672e+01   1.30393647e+01
   1.29356170e+01   1.27842592e+01   1.25976951e+01   1.25661295e+01
   1.23510665e+01   1.23193706e+01   1.21483315e+01   1.19691464e+01
   1.18676639e+01   1.18288163e+01   1.17879500e+01   1.14931262e+01
   1.14531188e+01   1.14297777e+01   1.13919572e+01   1.13248853e+01
   1.11708665e+01   1.10953594e+01   1.10584747e+01   1.09297737e+01
   1.08390080e+01   1.07155273e+01   1.06431570e+01   1.04878079e+01
   1.04275739e+01   1.03532890e+01   1.03250137e+01   1.02434743e+01
   1.01030256e+01   1.00209655e+01   9.92709517e+00   9.80912443e+00
   9.76520132e+00   9.70682509e+00   9.64238475e+00   9.57616346e+00
   9.48961471e+00   9.44281667e+00   9.31956910e+00   9.29568206e+00
   9.18839410e+00   9.17660846e+00   9.05832140e+00   8.96017531e+00
   8.93369754e+00   8.82354762e+00   8.77650330e+00   8.75600165e+00
   8.68873652e+00   8.60928379e+00   8.55226681e+00   8.42116078e+00
   8.36407710e+00   8.34934312e+00   8.28730024e+00   8.24773649e+00
   8.16719865e+00   8.09525866e+00   7.98650866e+00   7.88468276e+00
   7.79647976e+00   7.69115633e+00   7.63458962e+00   7.56040171e+00
   7.53544636e+00   7.46173601e+00   7.41005593e+00   7.38078642e+00
   7.31592675e+00   7.24162672e+00   7.21204910e+00   7.12580538e+00
   7.06748159e+00   7.04875610e+00   6.93468369e+00   6.91143844e+00
   6.84893138e+00   6.79658037e+00   6.74536737e+00   6.71446707e+00
   6.62233692e+00   6.54237203e+00   6.46584550e+00   6.42918116e+00
   6.40251503e+00   6.32229168e+00   6.24917099e+00   6.18233958e+00
   6.10988514e+00   6.02111319e+00   5.95773483e+00   5.89015632e+00
   5.83634687e+00   5.76235675e+00   5.72923349e+00   5.68517014e+00
   5.62582115e+00   5.59775419e+00   5.50149203e+00   5.46986293e+00
   5.39114602e+00   5.22347581e+00   5.18820783e+00   5.15901837e+00
   5.08461040e+00   5.01101283e+00   4.98957647e+00   4.94080896e+00
   4.84403799e+00   4.75900579e+00   4.75013217e+00   4.66686134e+00
   4.54977649e+00   4.49260572e+00   4.46867656e+00   4.44113875e+00
   4.32629743e+00   4.29534290e+00   4.25534526e+00   4.15986238e+00
   4.13721910e+00   4.04475645e+00   4.02026378e+00   3.96861833e+00
   3.93482911e+00   3.86863269e+00   3.82721892e+00   3.74350402e+00
   3.69946735e+00   3.63846796e+00   3.54451832e+00   3.52604861e+00
   3.48041755e+00   3.44473611e+00   3.38556876e+00   3.30930540e+00
   3.25245083e+00   3.14645076e+00   3.10248665e+00   3.07718106e+00
   2.99492968e+00   2.95666439e+00   2.90567882e+00   2.78707639e+00
   2.76921582e+00   2.71874788e+00   2.66936824e+00   2.57564917e+00
   2.55888504e+00   2.51778296e+00   2.46275333e+00   2.41763633e+00
   2.37923915e+00   2.30329441e+00   2.26516003e+00   2.19844753e+00
   2.15427490e+00   2.03982910e+00   1.97905098e+00   1.96981169e+00
   1.92546248e+00   1.85175745e+00   1.81265449e+00   1.75442849e+00
   1.74477026e+00   1.65898051e+00   1.53862889e+00   1.48577690e+00
   1.46033935e+00   1.44805740e+00   1.36978507e+00   1.30677153e+00
   1.23391064e+00   1.22605621e+00   1.14069807e+00   1.06522138e+00
   1.04371911e+00   9.83508947e-01   8.82028255e-01   8.49431765e-01
   8.36399548e-01   7.59783773e-01   7.21958994e-01   6.69419300e-01
   6.30984978e-01   6.00707380e-01   5.11947756e-01   4.53569954e-01
   3.36631331e-01   3.20175350e-01   2.93830356e-01   1.85290616e-01
   1.49213596e-01   1.07692158e-01   9.97759801e-02   1.02883797e-02]

9-6:

import numpy as np

z=20
n=200
m=500
A=np.random.randint(100,size=(n,m))
ex_z=np.tile(z,(n,m))
result=np.abs(A-ex_z)
print("the closest element:")
print(np.argmin(result))
the closest element:
77



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值