1458 Common Subsequence【lcs】

本文探讨了如何使用动态规划算法解决最长公共子序列(LCS)问题,详细解释了算法的核心思想和实现步骤,通过实例展示了如何求解两个给定字符串的最长公共子序列,并给出了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Common Subsequence
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 43175 Accepted: 17501

Description

A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

Input

The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

Output

For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

Sample Input

abcfbc         abfcab
programming    contest 
abcd           mnp

Sample Output

4
2
0


单纯的考察 lcs 的题目

lcs,用的是动态规划的思想,具体暂时不太清楚,就是一直打表记录状态,等到最后的时候,记录下来的就是最长的那个序列....


#include<stdio.h>
#include<string.h>
#define max(a,b) (a>b?a:b)
int x[1005][1005];
int main()
{
	char a[1005],b[1005];
	while(~scanf("%s%s",a,b))
	{
		int i,j,lena=strlen(a),lenb=strlen(b);
		memset(x,0,sizeof(x));
		for(i=1;i<=lena;++i)//双循环打表记录状态
		{
			for(j=1;j<=lenb;++j)
			{
				if(a[i-1]==b[j-1])
				{
					x[i][j]=x[i-1][j-1]+1;
				}
				else
				{
					x[i][j]=max(x[i-1][j],x[i][j-1]);
				}
			}
		}
		printf("%d\n",x[lena][lenb]);//输出...
	}
	return 0;
}






评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值