RVO:Return value optimization

本文介绍C++中的一种特殊优化技术——返回值优化(RVO),它允许编译器省略函数返回值产生的临时对象拷贝操作,即使拷贝构造函数有副作用也能应用此优化。

Return value optimization

From Wikipedia, the free encyclopedia

Jump to: navigation , search

Return value optimization , or simply RVO , is a C++ -specific compiler optimization technique that involves eliminating the temporary object created to hold a function 's return value.[ 1] It is particularly notable for being allowed to change the observable behaviour of the resulting program .[ 2]

Contents

[hide ]

[edit ] Summary

In general, the C++ standard allows a compiler to perform any optimization, as long as the resulting executable exhibits the same observable behaviour as if all the requirements of the standard has been fulfilled. This is commonly referred to as the as-if rule .[ 3] The term return value optimization refers to a special clause in the C++ standard that allows an implementation to omit a copy operation resulting from a return statement , even if the copy constructor has side effects ,[ 4] something that is not permitted by the as-if rule alone.[ 3]

The following example demonstrates a scenario where the implementation may eliminate one or both of the copies being made, even if the copy constructor has a visible side effect (printing text).[ 4] The first copy that may be eliminated is the one where first is copied into the function f 's return value . The second copy that may be eliminated is the copy of the temporary object returned by f to second .

 



Depending on the compiler , and the compiler's settings, the resulting program may display any of the following outputs:

Hello World!
Hello World!
Hello World!
<nothing>

Background

Returning an object of builtin type from a function usually carries little to no overhead, since the object typically fits in a CPU register . Returning a larger object of class type may require more expensive copying from one memory location to another. To achieve this, an implementation may create a hidden object in the caller's stack frame , and pass the address of this object to the function. The function's return value is then copied into the hidden object.[ 5] Thus, code such as this:


 

May generate code equivalent to this:


 

which causes the Data object to be copied twice.

In the early stages of the evolution of C++ , the language's inability to efficiently return an object of class type from a function was considered a weakness.[ 6] Around 1991, Walter Bright invented a technique to minimize copying; effectively replacing the hidden object and the named object inside the function with the object used to hold the result:[ 7]


 

Bright implemented this optimization in his Zortech C++ compiler.[ 6] This particular technique was later coined "Named return value optimization", referring to the fact that the copying of a named object is elided.[ 7]

[edit ] Compiler support

Return value optimization is supported on most compilers,[ 1] including Microsoft Visual C++ ,[ 8] g++ ,[ 9] and the Intel C++ Compiler .

However, there may be circumstances where the compiler is unable to perform the optimization. One common case is when a function may return different named objects depending on the path of execution: [ 8] [ 10] [ 5]


 

[edit ] Other forms of copy elision

Apart from the elision of the copy operation in a return statement, section 12.8, paragraph 15 of the C++ standard lists another case where copy elision is allowed, namely when a temporary object of class type is copied to an object of the same type.[ 4] This is also a very widely implemented optimization. As a result, copy-initialization is usually equivalent to direct-initialization in terms of performance, but not in semantics; copy-initialization still requires an accessible copy constructor .[ 11] The optimization can not be applied to a temporary object that has been bound to a reference. Example:

 

The C++ standard also mentions that a similar optimization may be applied to objects being thrown and caught ,[ 12] [ 13] but it is unclear whether the optimization applies to both the copy from the thrown object to the exception object , and the copy from the exception object to the object declared in the exception-declaration of the catch clause . It is also unclear whether this optimization only applies to temporary objects , or named objects as well.[ 14] Given the following source code:



 

A conforming compiler should therefore produce a program that prints "Hello World!" twice. In the upcoming C++ standard (C++0x ), the issues have been addressed, essentially allowing the same set of outputs as the first program.[ 14

05-27
### C++ 返回值优化(RVO)的概念与实现 C++ 的返回值优化(Return Value Optimization, RVO)是一种编译器优化技术,旨在减少临时对象的创建和销毁开销。当函数返回一个局部对象时,编译器可能会跳过构造临时对象的过程,直接在调用者处构建最终的对象[^2]。 #### RVO 的基本原理 RVO 的核心思想是通过避免中间临时对象的生成来提高性能。在支持 RVO 的编译器中,当函数返回一个局部对象时,编译器会在调用者栈帧上预先分配目标对象的内存空间,并将该地址传递给被调用函数。随后,被调用函数直接使用 placement new 在这块内存上构造对象,从而避免了额外的拷贝或移动操作[^3]。 #### 示例代码 以下是一个展示 RVO 的简单例子: ```cpp #include <iostream> #include <string> class Message { public: Message(const std::string& content) : data(content) { std::cout << "Message constructed: " << data << std::endl; } ~Message() { std::cout << "Message destroyed: " << data << std::endl; } private: std::string data; }; Message getMessage() { return Message("Hello, World!"); } int main() { Message msg = getMessage(); return 0; } ``` 在这个例子中,`getMessage` 函数返回一个 `Message` 对象。如果启用了 RVO,那么 `Message("Hello, World!")` 将直接在 `main` 函数的栈帧上构造,而不会产生额外的临时对象[^1]。 #### 编译器行为 需要注意的是,RVO 的应用依赖于编译器的具体实现。尽管现代编译器(如 GCC、Clang 和 MSVC)通常会默认启用 RVO,但其行为可能受到多种因素的影响,例如是否启用了优化选项(如 `-O2` 或 `-O3`)。此外,某些情况下(如调试模式),编译器可能不会实施 RVO[^2]。 #### RVO 与移动语义的区别 RVO 是一种编译器优化技术,而移动语义则是 C++11 引入的一种语言特性。两者的区别在于: - **RVO**:完全消除临时对象的创建。 - **移动语义**:通过右值引用 (`&&`) 实现资源转移,减少深拷贝的开销,但仍然需要构造和析构临时对象[^2]。 #### 注意事项 虽然 RVO 能够显著提升性能,但开发者不应过度依赖它。编写代码时应保持简洁,尽量让编译器有机会应用 RVO。同时,对于关键性能场景,可以通过分析工具验证编译器是否实际实施了 RVO
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值