RVO:Return value optimization

本文介绍C++中的一种特殊优化技术——返回值优化(RVO),它允许编译器省略函数返回值产生的临时对象拷贝操作,即使拷贝构造函数有副作用也能应用此优化。

Return value optimization

From Wikipedia, the free encyclopedia

Jump to: navigation , search

Return value optimization , or simply RVO , is a C++ -specific compiler optimization technique that involves eliminating the temporary object created to hold a function 's return value.[ 1] It is particularly notable for being allowed to change the observable behaviour of the resulting program .[ 2]

Contents

[hide ]

[edit ] Summary

In general, the C++ standard allows a compiler to perform any optimization, as long as the resulting executable exhibits the same observable behaviour as if all the requirements of the standard has been fulfilled. This is commonly referred to as the as-if rule .[ 3] The term return value optimization refers to a special clause in the C++ standard that allows an implementation to omit a copy operation resulting from a return statement , even if the copy constructor has side effects ,[ 4] something that is not permitted by the as-if rule alone.[ 3]

The following example demonstrates a scenario where the implementation may eliminate one or both of the copies being made, even if the copy constructor has a visible side effect (printing text).[ 4] The first copy that may be eliminated is the one where first is copied into the function f 's return value . The second copy that may be eliminated is the copy of the temporary object returned by f to second .

 



Depending on the compiler , and the compiler's settings, the resulting program may display any of the following outputs:

Hello World!
Hello World!
Hello World!
<nothing>

Background

Returning an object of builtin type from a function usually carries little to no overhead, since the object typically fits in a CPU register . Returning a larger object of class type may require more expensive copying from one memory location to another. To achieve this, an implementation may create a hidden object in the caller's stack frame , and pass the address of this object to the function. The function's return value is then copied into the hidden object.[ 5] Thus, code such as this:


 

May generate code equivalent to this:


 

which causes the Data object to be copied twice.

In the early stages of the evolution of C++ , the language's inability to efficiently return an object of class type from a function was considered a weakness.[ 6] Around 1991, Walter Bright invented a technique to minimize copying; effectively replacing the hidden object and the named object inside the function with the object used to hold the result:[ 7]


 

Bright implemented this optimization in his Zortech C++ compiler.[ 6] This particular technique was later coined "Named return value optimization", referring to the fact that the copying of a named object is elided.[ 7]

[edit ] Compiler support

Return value optimization is supported on most compilers,[ 1] including Microsoft Visual C++ ,[ 8] g++ ,[ 9] and the Intel C++ Compiler .

However, there may be circumstances where the compiler is unable to perform the optimization. One common case is when a function may return different named objects depending on the path of execution: [ 8] [ 10] [ 5]


 

[edit ] Other forms of copy elision

Apart from the elision of the copy operation in a return statement, section 12.8, paragraph 15 of the C++ standard lists another case where copy elision is allowed, namely when a temporary object of class type is copied to an object of the same type.[ 4] This is also a very widely implemented optimization. As a result, copy-initialization is usually equivalent to direct-initialization in terms of performance, but not in semantics; copy-initialization still requires an accessible copy constructor .[ 11] The optimization can not be applied to a temporary object that has been bound to a reference. Example:

 

The C++ standard also mentions that a similar optimization may be applied to objects being thrown and caught ,[ 12] [ 13] but it is unclear whether the optimization applies to both the copy from the thrown object to the exception object , and the copy from the exception object to the object declared in the exception-declaration of the catch clause . It is also unclear whether this optimization only applies to temporary objects , or named objects as well.[ 14] Given the following source code:



 

A conforming compiler should therefore produce a program that prints "Hello World!" twice. In the upcoming C++ standard (C++0x ), the issues have been addressed, essentially allowing the same set of outputs as the first program.[ 14

本文旨在系统阐述利用MATLAB平台执行多模态语音分离任务的方法,重点围绕LRS3数据集的数据生成流程展开。LRS3(长时RGB+音频语音数据集)作为一个规模庞大的视频与音频集合,整合了丰富的视觉与听觉信息,适用于语音识别、语音分离及情感分析等多种研究场景。MATLAB凭借其高效的数值计算能力与完备的编程环境,成为处理此类多模态任务的适宜工具。 多模态语音分离的核心在于综合利用视觉与听觉等多种输入信息来解析语音信号。具体而言,该任务的目标是从混合音频中分离出不同说话人的声音,并借助视频中的唇部运动信息作为辅助线索。LRS3数据集包含大量同步的视频与音频片段,提供RGB视频、单声道音频及对应的文本转录,为多模态语音处理算法的开发与评估提供了重要平台。其高质量与大容量使其成为该领域的关键资源。 在相关资源包中,主要包含以下两部分内容: 1. 说明文档:该文件详细阐述了项目的整体结构、代码运行方式、预期结果以及可能遇到的问题与解决方案。在进行数据处理或模型训练前,仔细阅读此文档对正确理解与操作代码至关重要。 2. 专用于语音分离任务的LRS3数据集版本:解压后可获得原始的视频、音频及转录文件,这些数据将由MATLAB脚本读取并用于生成后续训练与测试所需的数据。 基于MATLAB的多模态语音分离通常遵循以下步骤: 1. 数据预处理:从LRS3数据集中提取每段视频的音频特征与视觉特征。音频特征可包括梅尔频率倒谱系数、感知线性预测系数等;视觉特征则涉及唇部运动的检测与关键点定位。 2. 特征融合:将提取的音频特征与视觉特征相结合,构建多模态表示。融合方式可采用简单拼接、加权融合或基于深度学习模型的复杂方法。 3. 模型构建:设计并实现用于语音分离的模型。传统方法可采用自适应滤波器或矩阵分解,而深度学习方法如U-Net、Transformer等在多模态学习中表现优异。 4. 训练与优化:使用预处理后的数据对模型进行训练,并通过交叉验证与超参数调整来优化模型性能。 5. 评估与应用:采用信号失真比、信号干扰比及信号伪影比等标准指标评估模型性能。若结果满足要求,该模型可进一步应用于实际语音分离任务。 借助MATLAB强大的矩阵运算功能与信号处理工具箱,上述步骤得以有效实施。需注意的是,多模态任务常需大量计算资源,处理大规模数据集时可能需要对代码进行优化或借助GPU加速。所提供的MATLAB脚本为多模态语音分离研究奠定了基础,通过深入理解与运用这些脚本,研究者可更扎实地掌握语音分离的原理,从而提升其在实用场景中的性能表现。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
05-27
### C++ 返回值优化(RVO)的概念与实现 C++ 的返回值优化(Return Value Optimization, RVO)是一种编译器优化技术,旨在减少临时对象的创建和销毁开销。当函数返回一个局部对象时,编译器可能会跳过构造临时对象的过程,直接在调用者处构建最终的对象[^2]。 #### RVO 的基本原理 RVO 的核心思想是通过避免中间临时对象的生成来提高性能。在支持 RVO 的编译器中,当函数返回一个局部对象时,编译器会在调用者栈帧上预先分配目标对象的内存空间,并将该地址传递给被调用函数。随后,被调用函数直接使用 placement new 在这块内存上构造对象,从而避免了额外的拷贝或移动操作[^3]。 #### 示例代码 以下是一个展示 RVO 的简单例子: ```cpp #include <iostream> #include <string> class Message { public: Message(const std::string& content) : data(content) { std::cout << "Message constructed: " << data << std::endl; } ~Message() { std::cout << "Message destroyed: " << data << std::endl; } private: std::string data; }; Message getMessage() { return Message("Hello, World!"); } int main() { Message msg = getMessage(); return 0; } ``` 在这个例子中,`getMessage` 函数返回一个 `Message` 对象。如果启用了 RVO,那么 `Message("Hello, World!")` 将直接在 `main` 函数的栈帧上构造,而不会产生额外的临时对象[^1]。 #### 编译器行为 需要注意的是,RVO 的应用依赖于编译器的具体实现。尽管现代编译器(如 GCC、Clang 和 MSVC)通常会默认启用 RVO,但其行为可能受到多种因素的影响,例如是否启用了优化选项(如 `-O2` 或 `-O3`)。此外,某些情况下(如调试模式),编译器可能不会实施 RVO[^2]。 #### RVO 与移动语义的区别 RVO 是一种编译器优化技术,而移动语义则是 C++11 引入的一种语言特性。两者的区别在于: - **RVO**:完全消除临时对象的创建。 - **移动语义**:通过右值引用 (`&&`) 实现资源转移,减少深拷贝的开销,但仍然需要构造和析构临时对象[^2]。 #### 注意事项 虽然 RVO 能够显著提升性能,但开发者不应过度依赖它。编写代码时应保持简洁,尽量让编译器有机会应用 RVO。同时,对于关键性能场景,可以通过分析工具验证编译器是否实际实施了 RVO
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值