- 博客(11)
- 收藏
- 关注
原创 k-means聚类算法
clear all;clc;tic; X=[ 91.8244186,22.3705287; 92.0069949,21.4282895; 90.3917291,23.764319; 90.3858206,22.4929908; 91.8780611,24.9015238; 88.6074625,24.3750433; 89.2166017,23.1468977; ]; k=2;[Idx,Ctrs,SumD,D]=kmeans(X,k); plot(X(Idx=
2021-12-10 09:15:00
607
原创 随机梯度下降法
import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3De0 = 1e1 = 1e2 = 1alpha = 0.01theta0 = np.random.uniform(0, 1)theta1 = np.random.uniform(0, 1)theta2 = np.random.uniform(0, 1)theta = np.array([theta1, thet
2021-11-12 08:30:43
139
原创 Actor Critic Method算法(强化学习)
import gym,osfrom itertools import countimport paddleimport paddle.nn as nnimport paddle.optimizer as optimimport paddle.nn.functional as Ffrom paddle.distribution import Categoricaldevice = paddle.get_device()env = gym.make("CartPole-v0")stat
2021-10-21 17:01:30
173
原创 主成分分析PCA(降维)
import numpy as np#初始化矩阵data = np.array([ [2.5,2.4], [0.5,0.7], [2.2,2.9], [1.9,2.2], [3.1,3.0], [2.3,2.7], [2, 1.6],
2021-10-07 16:43:40
92
原创 全连接神经网络
import numpy as npimport randomimport sysimport mathalpha = 0.01#sigmoid函数def sigmoid(x): return 1 / (1 + math.exp(-x))#损失函数def loss(): sigema1 = (y[0] - t[0]) ** 2 sigema2 = (y[1] - t[1]) ** 2 return sigema1 + sigema2#t是预测值
2021-09-24 10:24:39
118
原创 改进欧拉算法
import matplotlib.pyplot as plty = 1x = 0xx = [0] * 101yy = [0] * 101k1 = y - 0.2 * x / y #k1存储当前点的斜率k2 = 0.00 #k2存储下一个点的斜率for i in range (1,101): if(i == 1): #第一次计算的时候只有k1所以需要用朴素欧拉计算第一次的值 y = 1.1 * y - 0.2 *
2021-09-24 10:22:12
219
原创 用segmoid函数拟合阶跃函数
import matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3Dimport mathimport randomdef sigmoid(x): return 1 / (1 + math.exp(-x))e0 = 1e1 = 1e2 = 1alpha = 0.001omega0 = np.random.uniform(0,1)omega1 = np.random.uniform(0,1)omeg
2021-09-08 22:47:09
750
翻译 numpy操纵代码的还原
c = np.arange(1,13).reshape(6,2)carray([[ 1, 2], [ 3, 4], [ 5, 6], [ 7, 8], [ 9, 10], [11, 12]])np.vsplit(c,3)[array([[1, 2], [3, 4]]), array([[5, 6], [7, 8]]), array([[ 9, 10], [1...
2021-09-03 20:56:58
143
原创 机器学习:用matplotlib绘制拟合曲线
import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3De0 = 1e1 = 1e2 = 1alpha = 0.01theta0 = np.random.uniform(0,1)theta1 = np.random.uniform(0,1)theta2 = np.random.uniform(0,1)theta = np.array([theta1, thet.
2021-09-03 20:48:06
2099
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人