大数据概念
大数据(Big Data) :指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据主要解决,海量数据的 采集、存储、分析计算问题
大数据的特点
1.Volume(大量)
2.Velocity(高速)
3.Variety(多样)
4.Value(低价值密度)
大数据部门间业务流程分析

大数据部门内组织结构

大数据技术生态体系

图中涉及的技术名词解释如下:
1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySQL)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;
4)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
5)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
6)Oozie:Oozie是一个管理Hadoop作业(job)的工作流程调度管理系统。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
9)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。
经典推荐系统框架图

大数据技术涵盖 Sqoop、Flume、Kafka、Spark、Flink 等工具,用于海量数据的采集、存储、分析。Hadoop 生态中的 HBase 和 Hive 提供高效的数据管理和查询功能,而 ZooKeeper 则在分布式协调中发挥关键作用。这些技术共同构建了强大的大数据处理能力,为企业决策和流程优化提供支持。
1309

被折叠的 条评论
为什么被折叠?



