题目:Given an array containing n distinct numbers taken from 0, 1, 2, …, n, find the one that is missing from the array. For example, Given nums = [0, 1, 3] return 2.
Note: Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?
本题很简单,就是寻找一个n+1维数组中丢失的那个数。思路有三种,
- 遍历查找
- 求和
- 异或操作
方法一比较简单,就是将数组先排序,然后按顺序查询,如果第i个数不等于i,则说明少的是i,代码入下:
public int missingNumber(int[] nums) {
Arrays.sort(nums);
for(int i=0; i<nums.length; i++)
{
if(nums[i] != i)
return i;
}
return nums.length;
}
进一步我们可以使用binary search,代码入下:
public int missingNumber0(int[] nums) { //binary search
Arrays.sort(nums);
int left = 0, right = nums.length, mid= (left + right)/2;
while(left<right){
mid = (left + right)/2;
if(nums[mid]>mid) right = mid;
else left = mid+1;
}
return left;
}
方法二是使用求和的方式,我们知道0~n的和为n*(n+1)/2。减去求和结果就是我们丢失的数字:
public int missingNumber1(int[] nums){
int sum = 0;
for(int num : nums){
sum += num;
}
return nums.length*(nums.length+1)/2 - sum;
}
方法三是使用异或的方法,我们知道a^b^b=a。所以我们使用每个数与其索引疑惑即可。代码入下:
public int missingNumber2(int[] nums) {
//a^b^b=a。所以本例中可以使用异或操作
int xor = 0, i = 0;
for (i = 0; i < nums.length; i++) {
xor = xor ^ i ^ nums[i];
}
return xor ^ i;
}