poj 2188 Cow Laundry

Cow Laundry
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 1058 Accepted: 694

Description

The cows have erected clothes lines with N (1 <= N <= 1000) wires upon which they can dry their clothes after washing them. Having no opposable thumbs, they have thoroughly botched the job. Consider this clothes line arrangement with four wires: 
牛们用N (1 <= N <= 1000)根电线组了个晒衣绳用来晒衣服。由于没有对生手指(好吧,反正翻译是这么说的,牛没有,人有),他们没办法很好的完成这个任务。用四根电线拉成的晒衣绳如下
   Wire slot: 1   2    3    4

              ---------------   <-- the holder of the wires

              \    \  /    /

               \    \/    /

                \   /\   /       

                 \ /  \ /       <-- actual clothes lines

                  /    \

                 / \  / \

                /   \/   \

               /    /\    \

              /    /  \    \

              ---------------   <-- the holder of the wires

   Wire slot: 1   2    3    4

The wires cross! This is, of course, unacceptable.
电线纠缠到一起了!当然,这是很糟糕的......(我已经不知道在翻译神马了啊.....)
The cows want to unscramble the clothes lines with a minimum of hassle. Even their bovine minds can handle the notion of "swap these two lines". Since the cows have short arms they are limited to swapping adjacent pairs of wire endpoints on either the top or bottom holder. 
牛们希望用最少步骤来整理晾衣绳。好吧,牛似乎能够理解的概念就是“交换这些线其中的两条”。也就是说每次只能交换相邻的两条线
In the diagram above, it requires four such swaps in order to get a proper arrangement for the clothes line: 
在上面显示的那种混乱中,一共需要4次交换就能整理好晾衣绳如下。。
              1   2   3   4

              -------------   <-- the holder of the wires

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              |   |   |   |

              -------------   <-- the holder of the wires

              1   2   3   4

Help the cows unscramble their clothes lines. Find the smallest number of swaps that will get the clothes line into a proper arrangement.
帮助牛们整理晾衣绳,并找到最少的交换次数。
You are supplied with clothes line descriptions that use integers to describe the current ordering of the clothesline. The lines are uniquely numbered 1..N according to no apparent scheme. You are given the order of the wires as they appear in the N connecting slots of the top wire holder and also the order of the wires as they appear on the bottom wire holder.
提供给你的是晾衣绳的上端数据和下端数据,数据排列从1...N。

Input

* Line 1: A single integer: N
第一行:一个单独的整数,N
* Lines 2..N+1: Each line contains two integers in the range 1..N. The first integer is the wire ID of the wire in the top wire holder; the second integer is the wire ID of the wire in the bottom holder. Line 2 describes the wires connected to top slot 1 and bottom slot 1, respectively; line 3 describes the wires connected to top and bottom slot 2, respectively; and so on.
第二行..N+1:每一行有两个整形数据从1..N。第一个整形是位于上边的电线ID,第二个就是下面的电线头ID。第一组数据就是说4号电线对应着1号电线。

Output

* Line 1: A single integer specifying the minimum number of adjacent swaps required to straighten out the clothes lines.
一个整形数据输出最小的交换次数。

Sample Input

4
4 1
2 3
1 4
3 2

Sample Output

4

Source

 

这道题的叙述很符合美国一贯的作风......繁杂不过好像蛮有趣,由于是交换相邻两条,于是顺理成章的变成了逆序数的问题。只要先把对应位置找好,然后就计算一下逆序数就可以了......
 

#include <iostream>
#include <cmath>
#include <algorithm>
#include <stdio.h>
#include <string.h>

#define MAXINT 1111
#define LENGTH 1111

void Merge_sort(int a[LENGTH], int p, int r);
void Merge(int a[LENGTH], int p, int q, int r);

int inve_sum = 0;

int main(void)
{
	int top[LENGTH], bottom[LENGTH], a[LENGTH];
	int N;

	//freopen("in.txt", "r", stdin);
	//freopen("out.txt", "w", stdout);

    while(scanf("%d", &N)!= EOF){
    	for (int i = 0;i < N;i ++){
        	scanf("%d %d", &top[i], &bottom[i]);
    	}
    	for (int i = 0;i < N;i ++){
        		for (int j = 0;j < N;j ++){
            		if (top[i] == bottom[j]){
                			a[i] = j;
				break;
			}
        		}
    	}
	inve_sum = 0;
    	Merge_sort(a, 0, N - 1);
    	printf("%d\n", inve_sum);
    }
    return 1;
}

void Merge_sort(int a[LENGTH], int p, int r){
    int q;
    if (p < r){
        q = (p + r) >> 1;
        Merge_sort(a, p, q);
        Merge_sort(a, q + 1, r);
        Merge(a, p, q, r);
    }
}

void Merge(int a[LENGTH], int p, int q, int r){
    int L[(LENGTH >> 1) + 1], R[(LENGTH >> 1) + 1];
    int n1 = 0, n2 = 0;

    for (int i = p;i <= q;i ++){
        L[n1++] = a[i];
    }
    L[n1] = MAXINT;

    for (int i = q + 1;i <= r;i ++){
        R[n2++] = a[i];
    }
    R[n2] = MAXINT;

    n1 = 0, n2 = 0;
    for (int k = p;k <= r; k++){
        if (L[n1] <= R[n2]){
            a[k] = L[n1];
            n1++;
        }else{
            a[k] = R[n2];
            inve_sum += q - p + 1 - n1;
            n2++;
        }
    }
}


资源下载链接为: https://pan.quark.cn/s/abbae039bf2a DDC控制器是一种智能化的控制设备,广泛应用于建筑自动化、工业控制以及环境监控等领域。它基于先进的微处理器技术,具备强大的数据处理能力和灵活的编程功能。通过预先设定的程序,DDC控制器能够对各类传感器采集的信号进行分析处理,并根据预设的控制策略,精准地驱动执行器完成相应的操作。 在建筑自动化系统中,DDC控制器可用于控制暖通空调系统,实现对温度、湿度、风速等参数的精确调节。它能根据室内外环境的变化,自动调整空调设备的运行状态,确保室内环境的舒适性,同时优化能源消耗。此外,DDC控制器还可用于照明控制,根据自然光照强度和人员活动情况,自动调节灯光亮度,实现节能与舒适性的平衡。 在工业控制领域,DDC控制器可用于监控和控制生产线上的各种设备。它可以实时采集设备的运行数据,如温度、压力、流量等,通过分析这些数据判断设备的运行状态,并及时发出指令调整设备的运行参数,确保生产过程的稳定性和产品质量的可靠性。 DDC控制器具有高度的可靠性和稳定性,能够在恶劣的环境条件下长期稳定运行。其模块化的设计便于安装、调试和维护,用户可以根据实际需求灵活配置控制器的输入输出模块。此外,DDC控制器还具备良好的兼容性,能够与多种类型的传感器和执行器无缝对接,构建完整的自动化控制系统。 总之,DDC控制器凭借其卓越的性能和广泛的应用领域,已成为现代自动化控制系统中不可或缺的核心设备,为实现智能化、高效化和节能化的控制目标提供了有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值