Coins
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 10300 Accepted Submission(s): 4106
Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.
Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
3 10 1 2 4 2 1 1 2 5 1 4 2 1 0 0
Sample Output
8 4
Source
题意:
你有n种面值的硬币,告诉你每种硬币的数量,问这些硬币能拼成多少不超过m的面额。
思路:
多重背包。当某种硬币的总额大于背包容量时进行完全背包,否则进行二进制拆分进行01背包。最后统计dp[i]==i的数量,即恰好能凑出金额为i的情况总数sum。
代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int dp[100500];
int val[500],num[500];
void CompletePack(int v,int w, int m)
{
for(int i = v; i <= m; i++)
dp[i] = max(dp[i], dp[i-v]+w);
}
void ZeroOnePack(int v,int w,int m)
{
for(int i = m; i >= v; i--)
{
dp[i] = max(dp[i], dp[i-v]+w);
}
}
void MultiPack(int v, int w, int m, int c)
{
if(v*c > m) CompletePack(v,w,m);
else
{
int k = 1;
while(k < c)
{
ZeroOnePack(k*v, k*w, m);
c -= k;
k *= 2;
}
ZeroOnePack(c*v, c*w, m);
}
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m),n+m)
{
int i,j;
memset(dp, 0, sizeof(dp));
for(i = 1; i <= n; i++)
scanf("%d", &val[i]);
for(i = 1; i <= n; i++)
scanf("%d", &num[i]);
for(i = 1; i <= n; i++)
MultiPack(val[i],val[i],m,num[i]);
int sum = 0;
for(i = 1; i <= m; i++)
if(dp[i]==i) sum++;
printf("%d\n", sum);
}
return 0;
}