hdoj 2122Ice_cream’s world III 【最小生成树 kruskal && prim】

Ice_cream’s world III

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1074    Accepted Submission(s): 345


Problem Description
ice_cream’s world becomes stronger and stronger; every road is built as undirected. The queen enjoys traveling around her world; the queen’s requirement is like II problem, beautifies the roads, by which there are some ways from every city to the capital. The project’s cost should be as less as better.

Input
Every case have two integers N and M (N<=1000, M<=10000) meaning N cities and M roads, the cities numbered 0…N-1, following N lines, each line contain three integers S, T and C, meaning S connected with T have a road will cost C.

Output
If Wiskey can’t satisfy the queen’s requirement, you must be output “impossible”, otherwise, print the minimum cost in this project. After every case print one blank.

Sample Input
2 1 0 1 10 4 0

Sample Output
10 impossible



kruskal:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct node
{
	int s,t,c;
}p[1001000];
int cmp(node a,node b)
{
	return a.c < b.c;
}
int n,m;
int per[1100];
void init()
{
	for(int i=0; i < 1010; i++)
		per[i] = i;
}
int find(int x)
{
	if( x == per[x] )
		return x;
	return per[x] = find(per[x]);		
}
int join(int x,int y)
{
	int fx = find(x);
	int fy = find(y);
	if(fx != fy)
	{
		per[fx] = fy;
		return 1;
	}
	return 0;	
}
int main()
{
	int i,j,k;
	while(scanf("%d%d",&n, &m)!=EOF)
	{
		init();
		for(i = 0; i < m; i++)
		{
			scanf("%d%d%d",&p[i].s ,&p[i].t ,&p[i].c );
		}
		sort( p, p+m, cmp);
		int cost = 0;
		for(i = 0; i < m; i++)
		{
			if(join(p[i].s,p[i].t))
				cost += p[i].c;
		}
		int flag = 0;
		for(i = 0; i < n;i++)
		{
			if(per[i] == i)
			{
				flag++;
				if(flag > 1)	break;
			}
		} 
		if(flag > 1)
		puts("impossible\n");
		else
		printf("%d\n\n",cost);
	}
	return 0;
}



prim:

#include<cstdio>
#include<cstring>
#include<cmath>
#define mem(a, b) memset(a, (b), sizeof(a))
#define Wi(a) while(a--)
#define Si(a,b) scanf("%d%d", &a,&b)
#define Pi(a) printf("%d\n\n", (a))
#define INF 0x3f3f3f
int map[1010][1010];
int n,m;
int vis[1010];
int d[1010];
void prim()
{
	mem(vis, 0);
	int i, j, k;
	int ans = 0, minn;
	for(i = 0; i < n; i++)
		d[i] = map[1][i];
	vis[1] = 1;	
	for(i = 1; i < n; i++)
	{
		k = 1;
		minn = INF;
		for(j = 0; j < n; j++)
		{
			if(!vis[j] && d[j] < minn)
			{
				minn = d[j];
				k = j;
			}
		}
		if(minn == INF)//无法联通所有
		{
			puts("impossible\n");return ;
		}
		vis[k] = 1;
		ans += minn;
		for(j = 0; j < n; j++)
		{
			if(!vis[j] && d[j] > map[j][k])
				d[j] = map[j][k];
		}
	}
	Pi(ans);	
}
int main(){
	while(Si(n,m)==2)
	{
		int i,j,k;
		for(i = 0; i < n; i++)
		{
			for(j = 0; j < n; j++)
			{
				map[i][j] = INF;
			}
			map[i][i] = 0;
		}
		int a, b, c;
		Wi(m)
		{
			scanf("%d%d%d", &a, &b, &c); 
			if(map[a][b] > c)
				map[a][b] = map[b][a] = c;
		}
		prim();
	}
	return 0;
}




内容概要:该论文研究增程式电动汽车(REEV)的能量管理策略,针对现有优化策略实时性差的问题,提出基于工况识别的自适应等效燃油消耗最小策略(A-ECMS)。首先建立整车Simulink模型和基于规则的策略;然后研究动态规划(DP)算法和等效燃油最小策略;接着通过聚类分析将道路工况分为四类,并设计工况识别算法;最后开发基于工况识别的A-ECMS,通过高德地图预判工况类型并自适应调整SOC分配。仿真显示该策略比规则策略节油8%,比简单SOC规划策略节油2%,并通过硬件在环实验验证了实时可行性。 适合人群:具备一定编程基础,特别是对电动汽车能量管理策略有兴趣的研发人员和技术爱好者。 使用场景及目标:①理解增程式电动汽车能量管理策略的基本原理;②掌握动态规划算法和等效燃油消耗最小策略的应用;③学习工况识别算法的设计和实现;④了解基于工况识别的A-ECMS策略的具体实现及其优化效果。 其他说明:此资源不仅提供了详细的MATLAB/Simulink代码实现,还深入分析了各算法的原理和应用场景,适合用于学术研究和工业实践。在学习过程中,建议结合代码调试和实际数据进行实践,以便更好地理解策略的优化效果。此外,论文还探讨了未来的研究方向,如深度学习替代聚类、多目标优化以及V2X集成等,为后续研究提供了思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值