多元函数的极限与连续性
多元函数的极限 设二元函数
z
=
f
(
P
)
=
f
(
x
,
y
)
z=f(P)=f(x,y)
z=f(P)=f(x,y) 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 的某去心邻域
U
˚
(
P
0
)
\mathring{U}(P_0)
U˚(P0) 内有定义。若存在常数
A
A
A,
∀
ϵ
>
0
\forall \epsilon>0
∀ϵ>0,
∃
δ
>
0
\exist \delta>0
∃δ>0,当
0
<
ρ
(
P
,
P
0
)
=
(
x
−
x
0
)
2
+
(
y
−
y
0
)
2
<
δ
0<\rho(P,P_0)=\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta
0<ρ(P,P0)=(x−x0)2+(y−y0)2<δ 时,都有
∣
f
(
P
)
−
A
∣
=
∣
f
(
x
,
y
)
−
A
∣
<
ϵ
|f(P)-A|=|f(x,y)-A|<\epsilon
∣f(P)−A∣=∣f(x,y)−A∣<ϵ,则称
A
A
A 是函数
f
(
P
)
=
f
(
x
,
y
)
f(P)=f(x,y)
f(P)=f(x,y) 在点
P
(
x
,
y
)
P(x,y)
P(x,y) (以任意方式)趋于点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 时的极限,记作
lim
(
x
,
y
)
→
(
x
0
,
y
0
)
f
(
x
,
y
)
=
A
\lim\limits_{(x,y) \to (x_0,y_0)}{f(x,y)}=A
(x,y)→(x0,y0)limf(x,y)=A 或
lim
P
→
P
0
f
(
x
,
y
)
=
A
\lim\limits_{P \to P_0}{f(x,y)}=A
P→P0limf(x,y)=A 或
lim
x
→
x
0
y
→
y
0
f
(
x
,
y
)
=
A
\lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)}=A
y→y0x→x0limf(x,y)=A 或
f
(
x
,
y
)
→
A
f(x,y) \to A
f(x,y)→A
(
x
→
x
0
,
y
→
y
0
)
(x \to x_0,y \to y_0)
(x→x0,y→y0)。
累次极限与二重极限 若累次极限
lim
x
→
x
0
lim
y
→
y
0
f
(
x
,
y
)
\lim\limits_{x \to x_0}{\lim\limits_{y \to y_0}{f(x,y)}}
x→x0limy→y0limf(x,y) 和
lim
y
→
y
0
lim
x
→
x
0
f
(
x
,
y
)
\lim\limits_{y \to y_0}{\lim\limits_{x \to x_0}{f(x,y)}}
y→y0limx→x0limf(x,y) 与二重极限
lim
x
→
x
0
y
→
y
0
f
(
x
,
y
)
\lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)}
y→y0x→x0limf(x,y) 都存在,则三者相等。
推论 若累次极限
lim
x
→
x
0
lim
y
→
y
0
f
(
x
,
y
)
\lim\limits_{x \to x_0}{\lim\limits_{y \to y_0}{f(x,y)}}
x→x0limy→y0limf(x,y) 和
lim
y
→
y
0
lim
x
→
x
0
f
(
x
,
y
)
\lim\limits_{y \to y_0}{\lim\limits_{x \to x_0}{f(x,y)}}
y→y0limx→x0limf(x,y) 存在但不相等,则二重极限
lim
x
→
x
0
y
→
y
0
f
(
x
,
y
)
\lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)}
y→y0x→x0limf(x,y) 不存在。
二元函数的全增量
Δ
z
=
f
(
x
,
y
)
−
f
(
x
0
,
y
0
)
=
f
(
x
0
+
Δ
x
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
\Delta z=f(x,y)-f(x_0,y_0)=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)
Δz=f(x,y)−f(x0,y0)=f(x0+Δx,y0+Δy)−f(x0,y0)
二元函数的偏增量
{
Δ
x
z
=
f
(
x
,
y
0
)
−
f
(
x
0
,
y
0
)
=
f
(
x
0
+
Δ
x
,
y
0
)
−
f
(
x
0
,
y
0
)
Δ
y
z
=
f
(
x
0
,
y
)
−
f
(
x
0
,
y
0
)
=
f
(
x
0
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
\begin{cases}\Delta_x z=f(x,y_0)-f(x_0,y_0)=f(x_0+\Delta x,y_0)-f(x_0,y_0) \\ \Delta_y z=f(x_0,y)-f(x_0,y_0)=f(x_0,y_0+\Delta y)-f(x_0,y_0)\end{cases}
{Δxz=f(x,y0)−f(x0,y0)=f(x0+Δx,y0)−f(x0,y0)Δyz=f(x0,y)−f(x0,y0)=f(x0,y0+Δy)−f(x0,y0)
偏导数与全微分
二元函数的偏导数 设二元函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 的某邻域内有定义,若极限
lim
Δ
x
→
0
Δ
x
z
Δ
x
=
lim
Δ
x
→
0
f
(
x
0
+
Δ
x
,
y
0
)
−
f
(
x
0
,
y
0
)
Δ
x
=
lim
x
→
x
0
f
(
x
,
y
0
)
−
f
(
x
0
,
y
0
)
x
−
x
0
\lim\limits_{\Delta x \to 0}{\dfrac{\Delta_x z}{\Delta x}}=\lim\limits_{\Delta x \to 0}{\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}}=\lim\limits_{x \to x_0}{\dfrac{f(x,y_0)-f(x_0,y_0)}{x-x_0}}
Δx→0limΔxΔxz=Δx→0limΔxf(x0+Δx,y0)−f(x0,y0)=x→x0limx−x0f(x,y0)−f(x0,y0) 存在,则称该极限值为函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 处关于
x
x
x 的偏导数,记作
f
x
′
(
x
0
,
y
0
)
f_x'(x_0,y_0)
fx′(x0,y0) 或
∂
z
∂
x
∣
(
x
0
,
y
0
)
\left.\dfrac{\partial z}{\partial x}\right|_{(x_0,y_0)}
∂x∂z∣∣∣∣(x0,y0) 或
z
x
′
∣
(
x
0
,
y
0
)
\left.z'_x\right|_{(x_0,y_0)}
zx′∣(x0,y0) 或
∂
∂
x
f
(
x
,
y
)
∣
(
x
0
,
y
0
)
\left.\dfrac{\partial}{\partial x}f(x,y)\right|_{(x_0,y_0)}
∂x∂f(x,y)∣∣∣∣(x0,y0),否则称
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 处对
x
x
x 的偏导数不存在。若
d
d
x
f
(
x
,
y
0
)
∣
x
=
x
0
\left.\dfrac{\mathrm{d}}{\mathrm{d} x}f(x,y_0)\right|_{x=x_0}
dxdf(x,y0)∣∣∣∣x=x0 存在,则
∂
∂
x
f
(
x
,
y
)
∣
(
x
0
,
y
0
)
=
d
d
x
f
(
x
,
y
0
)
∣
x
=
x
0
\left.\dfrac{\partial}{\partial x}f(x,y)\right|_{(x_0,y_0)}=\left.\dfrac{\mathrm{d}}{\mathrm{d} x}f(x,y_0)\right|_{x=x_0}
∂x∂f(x,y)∣∣∣∣(x0,y0)=dxdf(x,y0)∣∣∣∣x=x0。
偏导顺序无关性 若函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 的二阶偏导数
f
x
y
′
′
(
x
,
y
)
f''_{xy}(x,y)
fxy′′(x,y) 和
f
y
x
′
′
(
x
,
y
)
f''_{yx}(x,y)
fyx′′(x,y) 都在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 处连续,则
f
x
y
′
′
(
x
0
,
y
0
)
=
f
y
x
′
′
(
x
0
,
y
0
)
f''_{xy}(x_0,y_0)=f''_{yx}(x_0,y_0)
fxy′′(x0,y0)=fyx′′(x0,y0)。
二元函数的全微分 若二元函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在点
(
x
,
y
)
(x,y)
(x,y) 处的全增量
Δ
z
=
f
(
x
0
+
Δ
x
,
y
0
+
Δ
y
)
−
f
(
x
0
,
y
0
)
\Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)
Δz=f(x0+Δx,y0+Δy)−f(x0,y0) 可表示为
Δ
z
=
A
Δ
x
+
B
Δ
y
+
o
(
ρ
)
\Delta z=A\Delta x+B\Delta y+o(\rho)
Δz=AΔx+BΔy+o(ρ)
(
ρ
→
0
)
(\rho \to 0)
(ρ→0),则称函数
f
(
x
,
y
)
f(x,y)
f(x,y) 在点
(
x
,
y
)
(x,y)
(x,y) 处可微,其中
d
z
=
A
Δ
x
+
B
Δ
y
\mathrm{d}z=A\Delta x+B\Delta y
dz=AΔx+BΔy 称为函数
f
(
x
,
y
)
f(x,y)
f(x,y) 在点
(
x
,
y
)
(x,y)
(x,y) 处的全微分,此时函数
f
(
x
,
y
)
f(x,y)
f(x,y) 在点
(
x
,
y
)
(x,y)
(x,y) 处的两个偏导数
f
x
′
(
x
,
y
)
f'_x(x,y)
fx′(x,y) 和
f
y
′
(
x
,
y
)
f'_y(x,y)
fy′(x,y) 都存在,且成立
A
=
f
x
′
(
x
,
y
)
A=f'_x(x,y)
A=fx′(x,y) 和
B
=
f
y
′
(
x
,
y
)
B=f'_y(x,y)
B=fy′(x,y),故有
d
z
=
f
x
′
(
x
,
y
)
d
x
+
f
y
′
(
x
,
y
)
d
y
=
∂
z
∂
x
d
x
+
∂
z
∂
y
d
y
\mathrm{d}z=f'_x(x,y)\mathrm{d}x+f'_y(x,y)\mathrm{d}y=\dfrac{\partial z}{\partial x}\mathrm{d}x+\dfrac{\partial z}{\partial y}\mathrm{d}y
dz=fx′(x,y)dx+fy′(x,y)dy=∂x∂zdx+∂y∂zdy。
可微的充分条件 若函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 的两个偏导数
f
x
′
(
x
,
y
)
f'_x(x,y)
fx′(x,y) 和
f
y
′
(
x
,
y
)
f'_y(x,y)
fy′(x,y) 在点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 处连续,则函数
f
(
x
,
y
)
f(x,y)
f(x,y) 在点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0) 处可微。
全增量公式
Δ
z
=
f
x
′
(
x
0
,
y
0
)
Δ
x
+
f
y
′
(
x
0
,
y
0
)
Δ
y
+
ϵ
1
Δ
x
+
ϵ
2
Δ
y
\Delta z=f'_x(x_0,y_0)\Delta x+f'_y(x_0,y_0)\Delta y+\epsilon_1\Delta x+\epsilon_2\Delta y
Δz=fx′(x0,y0)Δx+fy′(x0,y0)Δy+ϵ1Δx+ϵ2Δy
(
lim
x
0
→
0
y
0
→
0
ϵ
1
=
0
,
lim
x
0
→
0
y
0
→
0
ϵ
2
=
0
)
(\lim\limits_{x_0 \to 0 \atop y_0 \to 0}{\epsilon_1}=0,\lim\limits_{x_0 \to 0 \atop y_0 \to 0}{\epsilon_2}=0)
(y0→0x0→0limϵ1=0,y0→0x0→0limϵ2=0)
复合函数微分法
复合偏导公式 若函数
u
=
φ
(
x
,
y
)
u=\varphi(x,y)
u=φ(x,y) 和
v
=
ψ
(
x
,
y
)
v=\psi(x,y)
v=ψ(x,y) 在点
(
x
,
y
)
(x,y)
(x,y) 处的偏导数都存在,
z
=
f
(
u
,
v
)
z=f(u,v)
z=f(u,v) 在点
(
u
,
v
)
(u,v)
(u,v) 处可微,则复合函数
z
=
f
[
φ
(
x
,
y
)
,
ψ
(
x
,
y
)
]
z=f[\varphi(x,y),\psi(x,y)]
z=f[φ(x,y),ψ(x,y)] 在点
(
x
,
y
)
(x,y)
(x,y) 处的偏导数存在,且满足
∂
z
∂
x
=
∂
z
∂
u
⋅
∂
u
∂
x
+
∂
z
∂
v
⋅
∂
v
∂
x
\dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u} \cdot \dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v} \cdot \dfrac{\partial v}{\partial x}
∂x∂z=∂u∂z⋅∂x∂u+∂v∂z⋅∂x∂v 和
∂
z
∂
y
=
∂
z
∂
u
⋅
∂
u
∂
y
+
∂
z
∂
v
⋅
∂
v
∂
y
\dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u} \cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial v} \cdot \dfrac{\partial v}{\partial y}
∂y∂z=∂u∂z⋅∂y∂u+∂v∂z⋅∂y∂v。
极坐标下的复合偏导
(
∂
u
∂
r
)
2
+
1
r
2
(
∂
u
∂
θ
)
2
=
(
∂
u
∂
x
)
2
+
(
∂
u
∂
y
)
2
\left(\dfrac{\partial u}{\partial r}\right)^2+\dfrac{1}{r^2}\left(\dfrac{\partial u}{\partial \theta}\right)^2=\left(\dfrac{\partial u}{\partial x}\right)^2+\left(\dfrac{\partial u}{\partial y}\right)^2
(∂r∂u)2+r21(∂θ∂u)2=(∂x∂u)2+(∂y∂u)2
{
∂
u
∂
r
=
∂
u
∂
x
∂
x
∂
r
+
∂
u
∂
y
∂
y
∂
r
=
∂
u
∂
x
cos
θ
+
∂
u
∂
y
sin
θ
∂
u
∂
θ
=
∂
u
∂
x
∂
x
∂
θ
+
∂
u
∂
y
∂
y
∂
θ
=
−
∂
u
∂
x
r
sin
θ
+
∂
u
∂
y
r
sin
θ
⟹
(
∂
u
∂
r
)
2
+
1
r
2
(
∂
u
∂
θ
)
2
=
(
∂
u
∂
x
)
2
+
(
∂
u
∂
y
)
2
\begin{cases}\dfrac{\partial u}{\partial r}=\dfrac{\partial u}{\partial x}\dfrac{\partial x}{\partial r}+\dfrac{\partial u}{\partial y}\dfrac{\partial y}{\partial r}=\dfrac{\partial u}{\partial x}\cos\theta+\dfrac{\partial u}{\partial y}\sin\theta \\ \dfrac{\partial u}{\partial \theta}=\dfrac{\partial u}{\partial x}\dfrac{\partial x}{\partial \theta}+\dfrac{\partial u}{\partial y}\dfrac{\partial y}{\partial \theta}=-\dfrac{\partial u}{\partial x}r\sin\theta+\dfrac{\partial u}{\partial y}r\sin\theta\end{cases} \Longrightarrow \left(\dfrac{\partial u}{\partial r}\right)^2+\dfrac{1}{r^2}\left(\dfrac{\partial u}{\partial \theta}\right)^2=\left(\dfrac{\partial u}{\partial x}\right)^2+\left(\dfrac{\partial u}{\partial y}\right)^2
⎩⎪⎨⎪⎧∂r∂u=∂x∂u∂r∂x+∂y∂u∂r∂y=∂x∂ucosθ+∂y∂usinθ∂θ∂u=∂x∂u∂θ∂x+∂y∂u∂θ∂y=−∂x∂ursinθ+∂y∂ursinθ⟹(∂r∂u)2+r21(∂θ∂u)2=(∂x∂u)2+(∂y∂u)2
场的方向导数与梯度
方向导数定义 设数量场三元函数
u
u
u 在点
P
0
(
x
0
,
y
0
,
z
0
)
P_0(x_0,y_0,z_0)
P0(x0,y0,z0) 的某邻域
U
(
P
0
)
⊂
R
3
U(P_0) \subset \mathbb{R}^3
U(P0)⊂R3 内有定义,
l
\boldsymbol{l}
l 为从点
P
0
P_0
P0 出发的射线,
P
(
x
,
y
,
z
)
P(x,y,z)
P(x,y,z) 为
l
\boldsymbol{l}
l 上且含于
U
(
P
0
)
U(P_0)
U(P0) 内的任一点,若极限
lim
ρ
→
0
u
(
P
)
−
u
(
P
0
)
ρ
=
lim
ρ
→
0
Δ
l
u
ρ
\lim\limits_{\rho \to 0}{\dfrac{u(P)-u(P_0)}{\rho}}=\lim\limits_{\rho \to 0}{\dfrac{\Delta_{\boldsymbol{l}}u}{\rho}}
ρ→0limρu(P)−u(P0)=ρ→0limρΔlu 存在,则称该极限值为函数
u
u
u 在点
P
0
P_0
P0 处沿方向
l
\boldsymbol{l}
l 的方向导数,记作
∂
u
∂
l
∣
P
0
\left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}
∂l∂u∣∣∣∣P0。
方向导数公式 若函数
u
u
u 在点
P
0
(
x
0
,
y
0
,
z
0
)
P_0(x_0,y_0,z_0)
P0(x0,y0,z0) 处可微,则
u
u
u 在点
P
0
P_0
P0 处沿任一方向
l
\boldsymbol{l}
l 的方向导数都存在,且
∂
u
∂
l
∣
P
0
=
∂
u
∂
x
∣
P
0
cos
α
+
∂
u
∂
y
∣
P
0
cos
β
+
∂
u
∂
z
∣
P
0
cos
γ
\left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\left.\dfrac{\partial u}{\partial x}\right|_{P_0}\cos\alpha+\left.\dfrac{\partial u}{\partial y}\right|_{P_0}\cos\beta+\left.\dfrac{\partial u}{\partial z}\right|_{P_0}\cos\gamma
∂l∂u∣∣∣∣P0=∂x∂u∣∣∣∣P0cosα+∂y∂u∣∣∣∣P0cosβ+∂z∂u∣∣∣∣P0cosγ,其中方向
l
\boldsymbol{l}
l 上的单位矢量
l
0
=
{
cos
α
,
cos
β
,
cos
γ
}
\boldsymbol{l}^0=\{\cos\alpha,\cos\beta,\cos\gamma\}
l0={cosα,cosβ,cosγ}。
梯度
∂
u
∂
l
∣
P
0
=
(
∂
u
∂
x
,
∂
u
∂
y
,
∂
u
∂
z
)
∣
P
0
⋅
(
cos
α
,
cos
β
,
cos
γ
)
=
(
∂
u
∂
x
,
∂
u
∂
y
,
∂
u
∂
z
)
∣
P
0
⋅
l
0
\left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\left.\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)\right|_{P_0} \cdot (\cos\alpha,\cos\beta,\cos\gamma)=\left.\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)\right|_{P_0} \cdot \boldsymbol{l}^0
∂l∂u∣∣∣∣P0=(∂x∂u,∂y∂u,∂z∂u)∣∣∣∣P0⋅(cosα,cosβ,cosγ)=(∂x∂u,∂y∂u,∂z∂u)∣∣∣∣P0⋅l0,记函数
u
(
P
)
u(P)
u(P) 在点
P
P
P 处的梯度
g
r
a
d
u
=
(
∂
u
∂
x
,
∂
u
∂
y
,
∂
u
∂
z
)
=
∂
u
∂
x
i
^
+
∂
u
∂
y
j
^
+
∂
u
∂
z
k
^
\mathbf{grad} \ u=\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)=\dfrac{\partial u}{\partial x}\hat{i}+\dfrac{\partial u}{\partial y}\hat{j}+\dfrac{\partial u}{\partial z}\hat{k}
grad u=(∂x∂u,∂y∂u,∂z∂u)=∂x∂ui^+∂y∂uj^+∂z∂uk^,则
∂
u
∂
l
∣
P
0
=
g
r
a
d
u
(
P
0
)
⋅
l
0
=
∣
g
r
a
d
u
(
P
0
)
∣
∣
l
0
∣
cos
θ
=
∣
g
r
a
d
u
(
P
0
)
∣
cos
θ
\left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\mathbf{grad} \ u(P_0) \cdot \boldsymbol{l}^0=|\mathbf{grad} \ u(P_0)| |\boldsymbol{l}^0| \cos\theta=|\mathbf{grad} \ u(P_0)| \cos\theta
∂l∂u∣∣∣∣P0=grad u(P0)⋅l0=∣grad u(P0)∣∣l0∣cosθ=∣grad u(P0)∣cosθ,其中
θ
\theta
θ 为梯度矢量
g
r
a
d
u
(
P
0
)
\mathbf{grad} \ u(P_0)
grad u(P0) 与单位方向矢量
l
0
\boldsymbol{l}^0
l0 的夹角。
多元函数的极值
极值的必要条件 若函数
f
f
f 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 处存在偏导数且取到极值,则
f
x
′
(
x
0
,
y
0
)
=
f
y
′
(
x
0
,
y
0
)
=
0
f'_x(x_0,y_0)=f'_y(x_0,y_0)=0
fx′(x0,y0)=fy′(x0,y0)=0。若函数
f
f
f 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 处的偏导数
f
x
′
(
x
0
,
y
0
)
=
f
y
′
(
x
0
,
y
0
)
=
0
f'_x(x_0,y_0)=f'_y(x_0,y_0)=0
fx′(x0,y0)=fy′(x0,y0)=0,则称点
P
0
P_0
P0 为函数
f
f
f 的驻点或稳定点。
极值的充分条件 设函数
z
=
f
(
x
,
y
)
z=f(x,y)
z=f(x,y) 在点
P
0
(
x
0
,
y
0
)
P_0(x_0,y_0)
P0(x0,y0) 的某邻域
U
(
P
0
)
U(P_0)
U(P0) 内连续,且存在二阶连续偏导数,若
f
x
′
(
x
0
,
y
0
)
=
f
y
′
(
x
0
,
y
0
)
=
0
f'_x(x_0,y_0)=f'_y(x_0,y_0)=0
fx′(x0,y0)=fy′(x0,y0)=0,记
D
=
∣
f
x
x
′
′
(
x
0
,
y
0
)
f
x
y
′
′
(
x
0
,
y
0
)
f
y
x
′
′
(
x
0
,
y
0
)
f
y
y
′
′
(
x
0
,
y
0
)
∣
D=\begin{vmatrix}f''_{xx}(x_0,y_0) & f''_{xy}(x_0,y_0) \\ f''_{yx}(x_0,y_0) & f''_{yy}(x_0,y_0)\end{vmatrix}
D=∣∣∣∣fxx′′(x0,y0)fyx′′(x0,y0)fxy′′(x0,y0)fyy′′(x0,y0)∣∣∣∣,
(1) 若
D
>
0
D>0
D>0,则
f
(
x
0
,
y
0
)
f(x_0,y_0)
f(x0,y0) 必为极值点,且当
f
x
x
′
′
(
x
0
,
y
0
)
>
0
f''_{xx}(x_0,y_0)>0
fxx′′(x0,y0)>0 或
f
y
y
′
′
(
x
0
,
y
0
)
>
0
f''_{yy}(x_0,y_0)>0
fyy′′(x0,y0)>0 时为极小值点,当
f
x
x
′
′
(
x
0
,
y
0
)
<
0
f''_{xx}(x_0,y_0)<0
fxx′′(x0,y0)<0 或
f
y
y
′
′
(
x
0
,
y
0
)
<
0
f''_{yy}(x_0,y_0)<0
fyy′′(x0,y0)<0 时为极大值点;
(2) 若
D
<
0
D<0
D<0,则
f
(
x
0
,
y
0
)
f(x_0,y_0)
f(x0,y0) 不是极值点;
(3) 若
D
=
0
D=0
D=0,本法则不能判断是否为极值。
条件极值的拉格朗日乘数法 若
P
0
P_0
P0 是多元函数
f
(
x
1
,
x
2
,
…
,
x
n
)
f(x_1,x_2,\dots,x_n)
f(x1,x2,…,xn) 在约束条件
ψ
i
(
x
1
,
x
2
,
…
,
x
n
)
=
0
\psi_i(x_1,x_2,\dots,x_n)=0
ψi(x1,x2,…,xn)=0
(
i
=
1
,
2
,
…
,
m
)
(i=1,2,\dots,m)
(i=1,2,…,m) 下的极值点,记拉格朗日函数
L
(
x
1
,
x
2
,
…
,
x
n
,
λ
1
,
λ
2
,
…
λ
m
)
=
f
(
x
1
,
x
2
,
…
,
x
n
)
+
∑
i
=
1
m
λ
i
ψ
i
(
x
1
,
x
2
,
…
,
x
n
)
L(x_1,x_2,\dots,x_n,\lambda_1,\lambda_2,\dots\lambda_m)=f(x_1,x_2,\dots,x_n)+\sum\limits_{i=1}^{m}{\lambda_i\psi_i(x_1,x_2,\dots,x_n)}
L(x1,x2,…,xn,λ1,λ2,…λm)=f(x1,x2,…,xn)+i=1∑mλiψi(x1,x2,…,xn),则极值点是方程组
{
∂
L
∂
x
i
=
0
(
i
=
1
,
2
,
…
,
n
)
∂
L
∂
λ
j
=
0
(
j
=
1
,
2
,
…
,
m
)
\begin{cases}\dfrac{\partial L}{\partial x_i}=0 \ (i=1,2,\dots,n) \\ \dfrac{\partial L}{\partial \lambda_j}=0 \ (j=1,2,\dots,m)\end{cases}
⎩⎪⎨⎪⎧∂xi∂L=0 (i=1,2,…,n)∂λj∂L=0 (j=1,2,…,m) 的解。
偏导数在几何上的应用
矢值函数
r
(
t
)
=
x
(
t
)
i
^
+
y
(
t
)
j
^
+
z
(
t
)
k
^
\boldsymbol{r}(t)=x(t)\hat{i}+y(t)\hat{j}+z(t)\hat{k}
r(t)=x(t)i^+y(t)j^+z(t)k^
矢值函数的导数
r
′
(
t
)
=
d
r
d
t
=
lim
Δ
t
→
0
r
(
t
+
Δ
t
)
−
r
(
t
)
Δ
t
=
lim
Δ
t
→
0
Δ
x
i
^
+
Δ
y
j
^
+
Δ
z
k
^
Δ
t
=
x
′
(
t
)
i
^
+
y
′
(
t
)
j
^
+
z
′
(
t
)
k
^
\boldsymbol{r}'(t)=\dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}=\lim\limits_{\Delta t \to 0}{\dfrac{\boldsymbol{r}(t+\Delta t)-\boldsymbol{r}(t)}{\Delta t}}=\lim\limits_{\Delta t \to 0}{\dfrac{\Delta x\hat{i}+\Delta y\hat{j}+\Delta z\hat{k}}{\Delta t}}=x'(t)\hat{i}+y'(t)\hat{j}+z'(t)\hat{k}
r′(t)=dtdr=Δt→0limΔtr(t+Δt)−r(t)=Δt→0limΔtΔxi^+Δyj^+Δzk^=x′(t)i^+y′(t)j^+z′(t)k^
空间曲线的切线与法平面 设空间曲线参数方程
{
x
=
x
(
t
)
y
=
y
(
t
)
z
=
z
(
t
)
\begin{cases}x=x(t) \\ y=y(t) \\ z=z(t)\end{cases}
⎩⎪⎨⎪⎧x=x(t)y=y(t)z=z(t),则点
P
0
(
x
0
,
y
0
,
z
0
)
P_0(x_0,y_0,z_0)
P0(x0,y0,z0) 处的切矢量
d
r
d
t
∣
P
0
=
{
x
′
(
t
0
)
,
y
′
(
t
0
)
,
z
′
(
t
0
)
}
\left.\dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}\right|_{P_0}=\{x'(t_0),y'(t_0),z'(t_0)\}
dtdr∣∣∣∣P0={x′(t0),y′(t0),z′(t0)} 即切线的方向矢量和法平面的法矢量,故切线的点向式方程为
x
−
x
0
x
′
(
t
0
)
=
y
−
y
0
y
′
(
t
0
)
=
z
−
z
0
z
′
(
t
0
)
\dfrac{x-x_0}{x'(t_0)}=\dfrac{y-y_0}{y'(t_0)}=\dfrac{z-z_0}{z'(t_0)}
x′(t0)x−x0=y′(t0)y−y0=z′(t0)z−z0,法平面点法式方程为
x
′
(
t
0
)
(
x
−
x
0
)
+
y
′
(
t
0
)
(
y
−
y
0
)
+
z
′
(
t
0
)
(
z
−
z
0
)
=
0
x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0
x′(t0)(x−x0)+y′(t0)(y−y0)+z′(t0)(z−z0)=0。
空间曲面的切平面与法线 设空间曲面方程
F
(
x
,
y
,
z
)
=
0
F(x,y,z)=0
F(x,y,z)=0,取曲面上一点
M
0
(
x
0
,
y
0
,
z
0
)
M_0(x_0,y_0,z_0)
M0(x0,y0,z0),令曲面上过点
M
0
M_0
M0 的曲线
Γ
:
{
x
=
x
(
t
)
y
=
y
(
t
)
z
=
z
(
t
)
\Gamma:\begin{cases}x=x(t) \\ y=y(t) \\ z=z(t)\end{cases}
Γ:⎩⎪⎨⎪⎧x=x(t)y=y(t)z=z(t),则曲线
Γ
\Gamma
Γ 在点
M
0
M_0
M0 处的切矢量
r
′
=
{
x
′
(
t
0
)
,
y
′
(
t
0
)
,
z
′
(
t
0
)
}
\boldsymbol{r}'=\{x'(t_0),y'(t_0),z'(t_0)\}
r′={x′(t0),y′(t0),z′(t0)}。此时有
F
(
x
(
t
)
,
y
(
t
)
,
z
(
t
)
)
≡
0
F(x(t),y(t),z(t)) \equiv 0
F(x(t),y(t),z(t))≡0,两边对
t
t
t 求偏导得
F
x
′
⋅
x
′
(
t
)
+
F
y
′
⋅
y
′
(
t
)
+
F
z
′
⋅
z
′
(
t
)
=
0
F'_x \cdot x'(t)+F'_y \cdot y'(t)+F'_z \cdot z'(t)=0
Fx′⋅x′(t)+Fy′⋅y′(t)+Fz′⋅z′(t)=0,记
n
=
{
F
x
′
(
x
0
,
y
0
,
z
0
)
,
F
y
′
(
x
0
,
y
0
,
z
0
)
,
F
z
′
(
x
0
,
y
0
,
z
0
)
}
\boldsymbol{n}=\{F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)\}
n={Fx′(x0,y0,z0),Fy′(x0,y0,z0),Fz′(x0,y0,z0)},在点
M
0
M_0
M0 处恒有
n
⋅
r
′
=
0
\boldsymbol{n} \cdot \boldsymbol{r}'=0
n⋅r′=0,易知
n
\boldsymbol{n}
n 为切平面的法矢量和法线的方向矢量,故切平面的点法式方程为
F
x
′
(
x
0
,
y
0
,
z
0
)
(
x
−
x
0
)
+
F
y
′
(
x
0
,
y
0
,
z
0
)
(
y
−
y
0
)
+
F
z
′
(
x
0
,
y
0
,
z
0
)
(
z
−
z
0
)
=
0
F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0
Fx′(x0,y0,z0)(x−x0)+Fy′(x0,y0,z0)(y−y0)+Fz′(x0,y0,z0)(z−z0)=0,法线的点向式方程为
x
−
x
0
F
x
′
(
x
0
,
y
0
,
z
0
)
=
y
−
y
0
F
y
′
(
x
0
,
y
0
,
z
0
)
=
z
−
z
0
F
z
′
(
x
0
,
y
0
,
z
0
)
\dfrac{x-x_0}{F'_x(x_0,y_0,z_0)}=\dfrac{y-y_0}{F'_y(x_0,y_0,z_0)}=\dfrac{z-z_0}{F'_z(x_0,y_0,z_0)}
Fx′(x0,y0,z0)x−x0=Fy′(x0,y0,z0)y−y0=Fz′(x0,y0,z0)z−z0。