微积分复习(三)多元函数微分学

本文深入探讨了多元函数的极限、连续性、偏导数、全微分、复合函数微分、方向导数、梯度及极值等内容,解析了矢量函数、空间曲线与曲面的几何应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多元函数的极限与连续性

多元函数的极限 设二元函数 z = f ( P ) = f ( x , y ) z=f(P)=f(x,y) z=f(P)=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的某去心邻域 U ˚ ( P 0 ) \mathring{U}(P_0) U˚(P0) 内有定义。若存在常数 A A A ∀ ϵ > 0 \forall \epsilon>0 ϵ>0 ∃ δ > 0 \exist \delta>0 δ>0,当 0 < ρ ( P , P 0 ) = ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ 0<\rho(P,P_0)=\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta 0<ρ(P,P0)=(xx0)2+(yy0)2 <δ 时,都有 ∣ f ( P ) − A ∣ = ∣ f ( x , y ) − A ∣ < ϵ |f(P)-A|=|f(x,y)-A|<\epsilon f(P)A=f(x,y)A<ϵ,则称 A A A 是函数 f ( P ) = f ( x , y ) f(P)=f(x,y) f(P)=f(x,y) 在点 P ( x , y ) P(x,y) P(x,y) (以任意方式)趋于点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 时的极限,记作 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim\limits_{(x,y) \to (x_0,y_0)}{f(x,y)}=A (x,y)(x0,y0)limf(x,y)=A lim ⁡ P → P 0 f ( x , y ) = A \lim\limits_{P \to P_0}{f(x,y)}=A PP0limf(x,y)=A lim ⁡ x → x 0 y → y 0 f ( x , y ) = A \lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)}=A yy0xx0limf(x,y)=A f ( x , y ) → A f(x,y) \to A f(x,y)A ( x → x 0 , y → y 0 ) (x \to x_0,y \to y_0) (xx0,yy0)
累次极限与二重极限 若累次极限 lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) \lim\limits_{x \to x_0}{\lim\limits_{y \to y_0}{f(x,y)}} xx0limyy0limf(x,y) lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \lim\limits_{y \to y_0}{\lim\limits_{x \to x_0}{f(x,y)}} yy0limxx0limf(x,y) 与二重极限 lim ⁡ x → x 0 y → y 0 f ( x , y ) \lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)} yy0xx0limf(x,y) 都存在,则三者相等。
推论 若累次极限 lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) \lim\limits_{x \to x_0}{\lim\limits_{y \to y_0}{f(x,y)}} xx0limyy0limf(x,y) lim ⁡ y → y 0 lim ⁡ x → x 0 f ( x , y ) \lim\limits_{y \to y_0}{\lim\limits_{x \to x_0}{f(x,y)}} yy0limxx0limf(x,y) 存在但不相等,则二重极限 lim ⁡ x → x 0 y → y 0 f ( x , y ) \lim\limits_{x \to x_0 \atop y \to y_0}{f(x,y)} yy0xx0limf(x,y) 不存在。
二元函数的全增量 Δ z = f ( x , y ) − f ( x 0 , y 0 ) = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x,y)-f(x_0,y_0)=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x,y)f(x0,y0)=f(x0+Δx,y0+Δy)f(x0,y0)
二元函数的偏增量 { Δ x z = f ( x , y 0 ) − f ( x 0 , y 0 ) = f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ y z = f ( x 0 , y ) − f ( x 0 , y 0 ) = f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) \begin{cases}\Delta_x z=f(x,y_0)-f(x_0,y_0)=f(x_0+\Delta x,y_0)-f(x_0,y_0) \\ \Delta_y z=f(x_0,y)-f(x_0,y_0)=f(x_0,y_0+\Delta y)-f(x_0,y_0)\end{cases} {Δxz=f(x,y0)f(x0,y0)=f(x0+Δx,y0)f(x0,y0)Δyz=f(x0,y)f(x0,y0)=f(x0,y0+Δy)f(x0,y0)

偏导数与全微分

二元函数的偏导数 设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的某邻域内有定义,若极限 lim ⁡ Δ x → 0 Δ x z Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = lim ⁡ x → x 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x − x 0 \lim\limits_{\Delta x \to 0}{\dfrac{\Delta_x z}{\Delta x}}=\lim\limits_{\Delta x \to 0}{\dfrac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}}=\lim\limits_{x \to x_0}{\dfrac{f(x,y_0)-f(x_0,y_0)}{x-x_0}} Δx0limΔxΔxz=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=xx0limxx0f(x,y0)f(x0,y0) 存在,则称该极限值为函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 处关于 x x x 的偏导数,记作 f x ′ ( x 0 , y 0 ) f_x'(x_0,y_0) fx(x0,y0) ∂ z ∂ x ∣ ( x 0 , y 0 ) \left.\dfrac{\partial z}{\partial x}\right|_{(x_0,y_0)} xz(x0,y0) z x ′ ∣ ( x 0 , y 0 ) \left.z'_x\right|_{(x_0,y_0)} zx(x0,y0) ∂ ∂ x f ( x , y ) ∣ ( x 0 , y 0 ) \left.\dfrac{\partial}{\partial x}f(x,y)\right|_{(x_0,y_0)} xf(x,y)(x0,y0),否则称 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 处对 x x x 的偏导数不存在。若 d d x f ( x , y 0 ) ∣ x = x 0 \left.\dfrac{\mathrm{d}}{\mathrm{d} x}f(x,y_0)\right|_{x=x_0} dxdf(x,y0)x=x0 存在,则 ∂ ∂ x f ( x , y ) ∣ ( x 0 , y 0 ) = d d x f ( x , y 0 ) ∣ x = x 0 \left.\dfrac{\partial}{\partial x}f(x,y)\right|_{(x_0,y_0)}=\left.\dfrac{\mathrm{d}}{\mathrm{d} x}f(x,y_0)\right|_{x=x_0} xf(x,y)(x0,y0)=dxdf(x,y0)x=x0
偏导顺序无关性 若函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 的二阶偏导数 f x y ′ ′ ( x , y ) f''_{xy}(x,y) fxy(x,y) f y x ′ ′ ( x , y ) f''_{yx}(x,y) fyx(x,y) 都在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 处连续,则 f x y ′ ′ ( x 0 , y 0 ) = f y x ′ ′ ( x 0 , y 0 ) f''_{xy}(x_0,y_0)=f''_{yx}(x_0,y_0) fxy(x0,y0)=fyx(x0,y0)
二元函数的全微分 若二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 ( x , y ) (x,y) (x,y) 处的全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0) 可表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ) ( ρ → 0 ) (\rho \to 0) (ρ0),则称函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x , y ) (x,y) (x,y) 处可微,其中 d z = A Δ x + B Δ y \mathrm{d}z=A\Delta x+B\Delta y dz=AΔx+BΔy 称为函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x , y ) (x,y) (x,y) 处的全微分,此时函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x , y ) (x,y) (x,y) 处的两个偏导数 f x ′ ( x , y ) f'_x(x,y) fx(x,y) f y ′ ( x , y ) f'_y(x,y) fy(x,y) 都存在,且成立 A = f x ′ ( x , y ) A=f'_x(x,y) A=fx(x,y) B = f y ′ ( x , y ) B=f'_y(x,y) B=fy(x,y),故有 d z = f x ′ ( x , y ) d x + f y ′ ( x , y ) d y = ∂ z ∂ x d x + ∂ z ∂ y d y \mathrm{d}z=f'_x(x,y)\mathrm{d}x+f'_y(x,y)\mathrm{d}y=\dfrac{\partial z}{\partial x}\mathrm{d}x+\dfrac{\partial z}{\partial y}\mathrm{d}y dz=fx(x,y)dx+fy(x,y)dy=xzdx+yzdy
可微的充分条件 若函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 的两个偏导数 f x ′ ( x , y ) f'_x(x,y) fx(x,y) f y ′ ( x , y ) f'_y(x,y) fy(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处连续,则函数 f ( x , y ) f(x,y) f(x,y) 在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0) 处可微。
全增量公式 Δ z = f x ′ ( x 0 , y 0 ) Δ x + f y ′ ( x 0 , y 0 ) Δ y + ϵ 1 Δ x + ϵ 2 Δ y \Delta z=f'_x(x_0,y_0)\Delta x+f'_y(x_0,y_0)\Delta y+\epsilon_1\Delta x+\epsilon_2\Delta y Δz=fx(x0,y0)Δx+fy(x0,y0)Δy+ϵ1Δx+ϵ2Δy ( lim ⁡ x 0 → 0 y 0 → 0 ϵ 1 = 0 , lim ⁡ x 0 → 0 y 0 → 0 ϵ 2 = 0 ) (\lim\limits_{x_0 \to 0 \atop y_0 \to 0}{\epsilon_1}=0,\lim\limits_{x_0 \to 0 \atop y_0 \to 0}{\epsilon_2}=0) (y00x00limϵ1=0,y00x00limϵ2=0)

复合函数微分法

复合偏导公式 若函数 u = φ ( x , y ) u=\varphi(x,y) u=φ(x,y) v = ψ ( x , y ) v=\psi(x,y) v=ψ(x,y) 在点 ( x , y ) (x,y) (x,y) 处的偏导数都存在, z = f ( u , v ) z=f(u,v) z=f(u,v) 在点 ( u , v ) (u,v) (u,v) 处可微,则复合函数 z = f [ φ ( x , y ) , ψ ( x , y ) ] z=f[\varphi(x,y),\psi(x,y)] z=f[φ(x,y),ψ(x,y)] 在点 ( x , y ) (x,y) (x,y) 处的偏导数存在,且满足 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \dfrac{\partial z}{\partial x}=\dfrac{\partial z}{\partial u} \cdot \dfrac{\partial u}{\partial x}+\dfrac{\partial z}{\partial v} \cdot \dfrac{\partial v}{\partial x} xz=uzxu+vzxv ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \dfrac{\partial z}{\partial y}=\dfrac{\partial z}{\partial u} \cdot \dfrac{\partial u}{\partial y}+\dfrac{\partial z}{\partial v} \cdot \dfrac{\partial v}{\partial y} yz=uzyu+vzyv
极坐标下的复合偏导 ( ∂ u ∂ r ) 2 + 1 r 2 ( ∂ u ∂ θ ) 2 = ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 \left(\dfrac{\partial u}{\partial r}\right)^2+\dfrac{1}{r^2}\left(\dfrac{\partial u}{\partial \theta}\right)^2=\left(\dfrac{\partial u}{\partial x}\right)^2+\left(\dfrac{\partial u}{\partial y}\right)^2 (ru)2+r21(θu)2=(xu)2+(yu)2
{ ∂ u ∂ r = ∂ u ∂ x ∂ x ∂ r + ∂ u ∂ y ∂ y ∂ r = ∂ u ∂ x cos ⁡ θ + ∂ u ∂ y sin ⁡ θ ∂ u ∂ θ = ∂ u ∂ x ∂ x ∂ θ + ∂ u ∂ y ∂ y ∂ θ = − ∂ u ∂ x r sin ⁡ θ + ∂ u ∂ y r sin ⁡ θ ⟹ ( ∂ u ∂ r ) 2 + 1 r 2 ( ∂ u ∂ θ ) 2 = ( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 \begin{cases}\dfrac{\partial u}{\partial r}=\dfrac{\partial u}{\partial x}\dfrac{\partial x}{\partial r}+\dfrac{\partial u}{\partial y}\dfrac{\partial y}{\partial r}=\dfrac{\partial u}{\partial x}\cos\theta+\dfrac{\partial u}{\partial y}\sin\theta \\ \dfrac{\partial u}{\partial \theta}=\dfrac{\partial u}{\partial x}\dfrac{\partial x}{\partial \theta}+\dfrac{\partial u}{\partial y}\dfrac{\partial y}{\partial \theta}=-\dfrac{\partial u}{\partial x}r\sin\theta+\dfrac{\partial u}{\partial y}r\sin\theta\end{cases} \Longrightarrow \left(\dfrac{\partial u}{\partial r}\right)^2+\dfrac{1}{r^2}\left(\dfrac{\partial u}{\partial \theta}\right)^2=\left(\dfrac{\partial u}{\partial x}\right)^2+\left(\dfrac{\partial u}{\partial y}\right)^2 ru=xurx+yury=xucosθ+yusinθθu=xuθx+yuθy=xursinθ+yursinθ(ru)2+r21(θu)2=(xu)2+(yu)2

场的方向导数与梯度

方向导数定义 设数量场三元函数 u u u 在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 的某邻域 U ( P 0 ) ⊂ R 3 U(P_0) \subset \mathbb{R}^3 U(P0)R3 内有定义, l \boldsymbol{l} l 为从点 P 0 P_0 P0 出发的射线, P ( x , y , z ) P(x,y,z) P(x,y,z) l \boldsymbol{l} l 上且含于 U ( P 0 ) U(P_0) U(P0) 内的任一点,若极限 lim ⁡ ρ → 0 u ( P ) − u ( P 0 ) ρ = lim ⁡ ρ → 0 Δ l u ρ \lim\limits_{\rho \to 0}{\dfrac{u(P)-u(P_0)}{\rho}}=\lim\limits_{\rho \to 0}{\dfrac{\Delta_{\boldsymbol{l}}u}{\rho}} ρ0limρu(P)u(P0)=ρ0limρΔlu 存在,则称该极限值为函数 u u u 在点 P 0 P_0 P0 处沿方向 l \boldsymbol{l} l 的方向导数,记作 ∂ u ∂ l ∣ P 0 \left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0} luP0
方向导数公式 若函数 u u u 在点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处可微,则 u u u 在点 P 0 P_0 P0 处沿任一方向 l \boldsymbol{l} l 的方向导数都存在,且 ∂ u ∂ l ∣ P 0 = ∂ u ∂ x ∣ P 0 cos ⁡ α + ∂ u ∂ y ∣ P 0 cos ⁡ β + ∂ u ∂ z ∣ P 0 cos ⁡ γ \left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\left.\dfrac{\partial u}{\partial x}\right|_{P_0}\cos\alpha+\left.\dfrac{\partial u}{\partial y}\right|_{P_0}\cos\beta+\left.\dfrac{\partial u}{\partial z}\right|_{P_0}\cos\gamma luP0=xuP0cosα+yuP0cosβ+zuP0cosγ,其中方向 l \boldsymbol{l} l 上的单位矢量 l 0 = { cos ⁡ α , cos ⁡ β , cos ⁡ γ } \boldsymbol{l}^0=\{\cos\alpha,\cos\beta,\cos\gamma\} l0={cosα,cosβ,cosγ}
梯度 ∂ u ∂ l ∣ P 0 = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) ∣ P 0 ⋅ ( cos ⁡ α , cos ⁡ β , cos ⁡ γ ) = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) ∣ P 0 ⋅ l 0 \left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\left.\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)\right|_{P_0} \cdot (\cos\alpha,\cos\beta,\cos\gamma)=\left.\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)\right|_{P_0} \cdot \boldsymbol{l}^0 luP0=(xu,yu,zu)P0(cosα,cosβ,cosγ)=(xu,yu,zu)P0l0,记函数 u ( P ) u(P) u(P) 在点 P P P 处的梯度 g r a d   u = ( ∂ u ∂ x , ∂ u ∂ y , ∂ u ∂ z ) = ∂ u ∂ x i ^ + ∂ u ∂ y j ^ + ∂ u ∂ z k ^ \mathbf{grad} \ u=\left(\dfrac{\partial u}{\partial x},\dfrac{\partial u}{\partial y},\dfrac{\partial u}{\partial z}\right)=\dfrac{\partial u}{\partial x}\hat{i}+\dfrac{\partial u}{\partial y}\hat{j}+\dfrac{\partial u}{\partial z}\hat{k} grad u=(xu,yu,zu)=xui^+yuj^+zuk^,则 ∂ u ∂ l ∣ P 0 = g r a d   u ( P 0 ) ⋅ l 0 = ∣ g r a d   u ( P 0 ) ∣ ∣ l 0 ∣ cos ⁡ θ = ∣ g r a d   u ( P 0 ) ∣ cos ⁡ θ \left.\dfrac{\partial u}{\partial \boldsymbol{l}}\right|_{P_0}=\mathbf{grad} \ u(P_0) \cdot \boldsymbol{l}^0=|\mathbf{grad} \ u(P_0)| |\boldsymbol{l}^0| \cos\theta=|\mathbf{grad} \ u(P_0)| \cos\theta luP0=grad u(P0)l0=grad u(P0)l0cosθ=grad u(P0)cosθ,其中 θ \theta θ 为梯度矢量 g r a d   u ( P 0 ) \mathbf{grad} \ u(P_0) grad u(P0) 与单位方向矢量 l 0 \boldsymbol{l}^0 l0 的夹角。

多元函数的极值

极值的必要条件 若函数 f f f 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 处存在偏导数且取到极值,则 f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=f'_y(x_0,y_0)=0 fx(x0,y0)=fy(x0,y0)=0。若函数 f f f 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 处的偏导数 f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=f'_y(x_0,y_0)=0 fx(x0,y0)=fy(x0,y0)=0,则称点 P 0 P_0 P0 为函数 f f f 的驻点或稳定点。
极值的充分条件 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y) 在点 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0) 的某邻域 U ( P 0 ) U(P_0) U(P0) 内连续,且存在二阶连续偏导数,若 f x ′ ( x 0 , y 0 ) = f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=f'_y(x_0,y_0)=0 fx(x0,y0)=fy(x0,y0)=0,记 D = ∣ f x x ′ ′ ( x 0 , y 0 ) f x y ′ ′ ( x 0 , y 0 ) f y x ′ ′ ( x 0 , y 0 ) f y y ′ ′ ( x 0 , y 0 ) ∣ D=\begin{vmatrix}f''_{xx}(x_0,y_0) & f''_{xy}(x_0,y_0) \\ f''_{yx}(x_0,y_0) & f''_{yy}(x_0,y_0)\end{vmatrix} D=fxx(x0,y0)fyx(x0,y0)fxy(x0,y0)fyy(x0,y0)
(1) D > 0 D>0 D>0,则 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) 必为极值点,且当 f x x ′ ′ ( x 0 , y 0 ) > 0 f''_{xx}(x_0,y_0)>0 fxx(x0,y0)>0 f y y ′ ′ ( x 0 , y 0 ) > 0 f''_{yy}(x_0,y_0)>0 fyy(x0,y0)>0 时为极小值点,当 f x x ′ ′ ( x 0 , y 0 ) < 0 f''_{xx}(x_0,y_0)<0 fxx(x0,y0)<0 f y y ′ ′ ( x 0 , y 0 ) < 0 f''_{yy}(x_0,y_0)<0 fyy(x0,y0)<0 时为极大值点;
(2) D < 0 D<0 D<0,则 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0) 不是极值点;
(3) D = 0 D=0 D=0,本法则不能判断是否为极值。
条件极值的拉格朗日乘数法 若 P 0 P_0 P0 是多元函数 f ( x 1 , x 2 , … , x n ) f(x_1,x_2,\dots,x_n) f(x1,x2,,xn) 在约束条件 ψ i ( x 1 , x 2 , … , x n ) = 0 \psi_i(x_1,x_2,\dots,x_n)=0 ψi(x1,x2,,xn)=0 ( i = 1 , 2 , … , m ) (i=1,2,\dots,m) (i=1,2,,m) 下的极值点,记拉格朗日函数 L ( x 1 , x 2 , … , x n , λ 1 , λ 2 , … λ m ) = f ( x 1 , x 2 , … , x n ) + ∑ i = 1 m λ i ψ i ( x 1 , x 2 , … , x n ) L(x_1,x_2,\dots,x_n,\lambda_1,\lambda_2,\dots\lambda_m)=f(x_1,x_2,\dots,x_n)+\sum\limits_{i=1}^{m}{\lambda_i\psi_i(x_1,x_2,\dots,x_n)} L(x1,x2,,xn,λ1,λ2,λm)=f(x1,x2,,xn)+i=1mλiψi(x1,x2,,xn),则极值点是方程组 { ∂ L ∂ x i = 0   ( i = 1 , 2 , … , n ) ∂ L ∂ λ j = 0   ( j = 1 , 2 , … , m ) \begin{cases}\dfrac{\partial L}{\partial x_i}=0 \ (i=1,2,\dots,n) \\ \dfrac{\partial L}{\partial \lambda_j}=0 \ (j=1,2,\dots,m)\end{cases} xiL=0 (i=1,2,,n)λjL=0 (j=1,2,,m) 的解。

偏导数在几何上的应用

矢值函数 r ( t ) = x ( t ) i ^ + y ( t ) j ^ + z ( t ) k ^ \boldsymbol{r}(t)=x(t)\hat{i}+y(t)\hat{j}+z(t)\hat{k} r(t)=x(t)i^+y(t)j^+z(t)k^
矢值函数的导数 r ′ ( t ) = d r d t = lim ⁡ Δ t → 0 r ( t + Δ t ) − r ( t ) Δ t = lim ⁡ Δ t → 0 Δ x i ^ + Δ y j ^ + Δ z k ^ Δ t = x ′ ( t ) i ^ + y ′ ( t ) j ^ + z ′ ( t ) k ^ \boldsymbol{r}'(t)=\dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}=\lim\limits_{\Delta t \to 0}{\dfrac{\boldsymbol{r}(t+\Delta t)-\boldsymbol{r}(t)}{\Delta t}}=\lim\limits_{\Delta t \to 0}{\dfrac{\Delta x\hat{i}+\Delta y\hat{j}+\Delta z\hat{k}}{\Delta t}}=x'(t)\hat{i}+y'(t)\hat{j}+z'(t)\hat{k} r(t)=dtdr=Δt0limΔtr(t+Δt)r(t)=Δt0limΔtΔxi^+Δyj^+Δzk^=x(t)i^+y(t)j^+z(t)k^
空间曲线的切线与法平面 设空间曲线参数方程 { x = x ( t ) y = y ( t ) z = z ( t ) \begin{cases}x=x(t) \\ y=y(t) \\ z=z(t)\end{cases} x=x(t)y=y(t)z=z(t),则点 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0) 处的切矢量 d r d t ∣ P 0 = { x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) } \left.\dfrac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t}\right|_{P_0}=\{x'(t_0),y'(t_0),z'(t_0)\} dtdrP0={x(t0),y(t0),z(t0)} 即切线的方向矢量和法平面的法矢量,故切线的点向式方程为 x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) \dfrac{x-x_0}{x'(t_0)}=\dfrac{y-y_0}{y'(t_0)}=\dfrac{z-z_0}{z'(t_0)} x(t0)xx0=y(t0)yy0=z(t0)zz0,法平面点法式方程为 x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0
空间曲面的切平面与法线 设空间曲面方程 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0,取曲面上一点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0),令曲面上过点 M 0 M_0 M0 的曲线 Γ : { x = x ( t ) y = y ( t ) z = z ( t ) \Gamma:\begin{cases}x=x(t) \\ y=y(t) \\ z=z(t)\end{cases} Γ:x=x(t)y=y(t)z=z(t),则曲线 Γ \Gamma Γ 在点 M 0 M_0 M0 处的切矢量 r ′ = { x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) } \boldsymbol{r}'=\{x'(t_0),y'(t_0),z'(t_0)\} r={x(t0),y(t0),z(t0)}。此时有 F ( x ( t ) , y ( t ) , z ( t ) ) ≡ 0 F(x(t),y(t),z(t)) \equiv 0 F(x(t),y(t),z(t))0,两边对 t t t 求偏导得 F x ′ ⋅ x ′ ( t ) + F y ′ ⋅ y ′ ( t ) + F z ′ ⋅ z ′ ( t ) = 0 F'_x \cdot x'(t)+F'_y \cdot y'(t)+F'_z \cdot z'(t)=0 Fxx(t)+Fyy(t)+Fzz(t)=0,记 n = { F x ′ ( x 0 , y 0 , z 0 ) , F y ′ ( x 0 , y 0 , z 0 ) , F z ′ ( x 0 , y 0 , z 0 ) } \boldsymbol{n}=\{F'_x(x_0,y_0,z_0),F'_y(x_0,y_0,z_0),F'_z(x_0,y_0,z_0)\} n={Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)},在点 M 0 M_0 M0 处恒有 n ⋅ r ′ = 0 \boldsymbol{n} \cdot \boldsymbol{r}'=0 nr=0,易知 n \boldsymbol{n} n 为切平面的法矢量和法线的方向矢量,故切平面的点法式方程为 F x ′ ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ′ ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ′ ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 F'_x(x_0,y_0,z_0)(x-x_0)+F'_y(x_0,y_0,z_0)(y-y_0)+F'_z(x_0,y_0,z_0)(z-z_0)=0 Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0,法线的点向式方程为 x − x 0 F x ′ ( x 0 , y 0 , z 0 ) = y − y 0 F y ′ ( x 0 , y 0 , z 0 ) = z − z 0 F z ′ ( x 0 , y 0 , z 0 ) \dfrac{x-x_0}{F'_x(x_0,y_0,z_0)}=\dfrac{y-y_0}{F'_y(x_0,y_0,z_0)}=\dfrac{z-z_0}{F'_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值