from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)
//读入数据
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder(tf.float32, [None, 784])
w = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,w)+b)
y_=tf.placeholder(tf.float32,[None,10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
tf.global_variables_initializer().run()
for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100)
train_step.run({x:batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x:mnist.test.images, y_:mnist.test.labels}))
模型建立步骤:
1 载入数据
2 创建权重 偏差变量
3 实现softmax算法 y = tf.nn.softmax(tf.matmul(x,w)+b)
4 为训练模型,定义loss function cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
q
5 选择优化算法 对loss function 最小化 train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)