Objective-C学习笔记

本文介绍Objective-C中的类定义、实例方法与类方法,并通过矩形和正方形类的实例展示了如何利用继承来扩展已有类的功能。
@interface section describes the class, its data components, and its methods, whereas the @implementation section contains the actual code that implements these methods.

@interface 声明类的定义,成员跟方法

@implementation 是具体的实现

@interface section
@implementation section
program section

命名规则与c一样,字母及下划线开头,区分大小写字母
定义类名用大写字母,定义method,variables,objects通常是小写字母
AddressBook     This could be a class name.
currentEntry     This could be an object.
current_entry     Underscores are also used by some programmers as word parators.
addNewEntry     This could be a method name.
 
//------- @interface section -------

@interface Fraction: Object    //声明继续类
{
  int  numerator;        //成员变量
  int  denominator;
}
-(void) print;                //实例方法 instance  method
-(void) setNumerator: (int) n;
-(void) setDenominator: (int) d;   
+(void) makeNumber;            //类方法 class method
@end

objc中有了类内部方法的概念,class method 只能供类内部调用,不能对外,类似于c++中的public 和private的概念。
-    (void)    setNumerator:    (int)    n;
method type,return type,method name,method takes argument,argument type,argument name

//------- @implementation section -------
@implementation Fraction;
-(void) print
{
  printf (" %i/%i ", numerator, denominator);
}
-(void) setNumerator: (int) n
{
  numerator = n;
}
-(void) setDenominator: (int) d
{
  denominator = d;
  }
@end

//------- program section -------
int main (int argc, char *argv[])
{
  Fraction  *myFraction;//声明一个指针
  // Create an instance of a Fraction
  myFraction = [Fraction alloc];//分配一个Fraction
  myFraction = [myFraction init];//初始化
    // Fraction *myFraction = [[Fraction alloc] init];

  // Set fraction to 1/3
  [myFraction setNumerator: 1];//函数调用,类似于c++中myFraction.setNumerator(1);
  [myFraction setDenominator: 3];//c++中myFraction.setDenominator(3);
  // Display the fraction using the print method
  printf ("The value of myFraction is:");
  [myFraction print];//c++中myFraction.print();
  printf ("/n");
  [myFraction free];//释放分配的内存
  return 0;
}
类型id可以是任意类型的对象

#import "Fraction.h" //可以使用include的方式,但是没有防止重复引用的功能
多参数以colon分隔 
有2种的命名方式
参数带名称:-(void)    setTo: (int) n over: (int) d;
不带参数名称:-(int) set: (int) n: (int) d;
写参数的注释是为了更好的读代码
- (void) add: (Fraction *) f
传递指针的方式 [f denominator]调用 == C/C++ 中的f->denominator
局部变量、静态变量 与 C/C++中一样,只初始化一次
[self reduce]; //调用本身的对象 类似于C++ 中的this指针

[[aFraction add: bFraction] print];  a little roundabout 转弯抹角
//先返回一个指针,然后直接调用其函数 C++中没有这个语法概念

Extension Through Inheritance—Adding New Methods
Many times the idea of inheritance is used to extend a class. As an example, let's assume you've just been assigned the task of developing some classes to work with 2D graphical objects such as rectangles, circles, and triangles. For now, we'll just worry about rectangles. In fact, let's go back to exercise 9 from Chapter 4, "Data Types and Expressions," and start with the @interface section from that example:



@interface Rectangle: Object
{
    int  width;
    int  height;
}

-(void)  setWidth: (int) w;
-(void)  setHeight: (int) h;
-(int)  width;
-(int)  height;
-(int)  area;
-(int)  perimeter;
@end

You have methods to set the rectangle's width and height, return those values, and calculate its area and perimeter. Let's also add a method that will allow you to set both the width and the height of the rectangle with the same message call, which is as follows:



-(void) setWidth: (int) w and Height: (int) h;

Assume you typed this new class declaration into a file called Rectangle.h. Here's what the implementation file Rectangle.m might look like:



#import "Rectangle.h"

@implementation Rectangle;

-(void) setWidth: (int) w
{
     width = w;
}

-(void) setHeight: (int) h
{
     height = h;
}

-(void) setWidth: (int) w and Height: (int) h
{
    width = w;
    height = h;
}

-(int) width
{
    return width;
}

-(int) height
{
    return height;
}

-(int) area
{
    return width * height;
}

-(int) perimeter
{
    return (width + height) * 2;
}
@end

Each method definition is straightforward enough. Program 8.2 shows a main routine to test it.

Program 8.2
#import "Rectangle.h"
#import <stdio.h>

int main (int argc, char *argv[])
{
       Rectangle *myRect = [[Rectangle alloc] init];

       [myRect setWidth: 5 andHeight: 8];

       printf ("Rectangle: w = %i, h = %i/n",
              [myRect width], [myRect height]);
       printf ("Area = %i, Perimeter = %i/n",
              [myRect area], [myRect perimeter]);
       [myRect free];

       return 0;
}

Program 8.2 Output
Rectangle: w = 5, h = 8
Area = 40, Perimeter = 26

myRect is allocated and initialized; then its width is set to 5 and its height to 8. This is verified by the first printf call. Next, the area and the perimeter of the rectangle are calculated with the appropriate message calls, and the returned values are handed off to printf to be displayed.

After working with rectangles for a while, suppose you now need to work with squares. You could define a new class called Square and define similar methods in it as in your Rectangle class. Alternately, you could recognize the fact that a square is just a special case of a rectangle—one whose width and height just happen to be the same.

Thus, an easy way to handle this is to make a new class called Square and have it be a subclass of Rectangle. That way, you get to use all of Rectangle's methods and variables, in addition to defining your own. For now, the only methods you might want to add would be to set the side of the square to a particular value and retrieve that value. The interface and implementation files for your new Square class are shown in Programs 8.3 and 8.4.

Program 8.3 Square.h Interface File
#import "Rectangle.h"

@interface Square: Rectangle;

-(void) setSide: (int) s;
-(int) side;
@end

Program 8.4 Square.m Implementation File
#import "Square.h"

@implementation Square: Rectangle;

-(void) setSide: (int) s
{
  [self setWidth: s andHeight: s];
}

-(int) side
{
  return width;
}
@end

Notice what you did here. You defined your Square class to be a subclass of Rectangle, which is declared in the header file Rectangle.h. You didn't need to add any instance variables here, but you did add new methods called setSide: and side.

Even though a square has only one side, and you're internally representing it as two numbers, that's okay. All that is hidden from the user of the Square class. You could always redefine your Square class later if necessary; any users of the class wouldn't have to be concerned with the internal details because of the notion of data encapsulation discussed earlier.

The setSide: method takes advantage of the fact that you already have a method inherited from your Rectangle class to set the values of the width and height of a rectangle. So, setSide: calls the setWidth:andHeight: method from the Rectangle class passing the parameter s as the value for both the width and the height. There's really nothing else you have to do. Someone working with a Square object can now set the dimensions of the square by using setSide: and take advantage of the methods from the Rectangle class to calculate the square's area, perimeter, and so on. Program 8.5 shows the test program and output for your new Square class.

Program 8.5 Test Program test2.m
#import "Square.h"
#import <stdio.h>

int main (int argc, char *argv[])
{
  Square *mySquare = [[Square alloc] init];

  [mySquare setSide: 5];

  printf ("Square s = %i/n", [mySquare side]);
  printf ("Area = %i, Perimeter = %i/n",
      [mySquare area], [mySquare perimeter]);
  [mySquare free];

  return 0;
}

Program 8.5 Output
Square s = 5
Area = 25, Perimeter = 20

To compile your program, remember that you have to tell the compiler that your program consists of three files: Rectangle.m and Square.m, which define the class methods, and test2.m, which contains your test routine. (Remember, you don't specify the .h header files to the compiler because they're imported directly into the programs.) If you're building your program from the command lines, here's what your gcc command line might look like:



gcc Square.m Rectangle.m test2.m –o test2 –l objc

The way you defined the Square class is a fundamental technique of working with classes in Objective-C: taking what you or someone else has done before and extending it to suit your needs. In addition, a mechanism known as categories enables you to add new methods to an existing class definition in a modular fashion—that is, without having to constantly add new definitions to the same interface and implementation files. This is particularly handy when you want to do this to a class for which you don't have access to the source code. You'll learn about categories in Chapter 11, "Categories, Posing, and Protocols."

A Point Class and Memory Allocation
The Rectangle class stores only the rectangle's dimensions. In a real-world graphical application, you might need to keep track of all sorts of additional information, such as the rectangle's fill color, line color, location (origin) inside a window, and so on. You can easily extend your class to do this. For now, let's deal with the idea of the rectangle's origin. Assume that the "origin" means the location of the rectangle's lower-left corner within some Cartesian coordinate system (x, y). If you were writing a drawing application, this point might represent the location of the rectangle inside a window, as depicted in Figure 8.4.

Figure 8.4. A rectangle drawn in a window.


In Figure 8.4 the rectangle's origin is shown at (x1, y1).

You could extend your Rectangle class to store the x, y coordinate of the rectangle's origin as two separate values. Or you might realize that, in the development of your graphics application, you'll have to deal with a lot of coordinates and therefore decide to define a class called Point (you might recall this problem from exercise 7 in Chapter 3):



#import <objc/Object.h>

@interface Point: Object
{
  int  x;
  int  y;
}

-(void) setX: (int) xVal;
-(void) setY: (int) yVal;
-(void) setX: (int) xVal andY: (int) yVal;
-(int) x;
-(int) y;
@end

#import <objc/Object.h>

@class Point; //编译器只需要关心,Point 是一个类的定义
@interface Rectangle: Object
{
  int   width;   -----------》成员变量的定义
  int   height;
  Point *origin;
}

-(void)    setWidth: (int) w;   ------》声明方法
-(void)    setHeight: (int) h;
-(void)    setOrigin: (Point *) pt;
-(Point *) origin;
-(int)   width;
-(int)   height;
-(int)   area;
-(int)   perimeter;
@end







 
AI 代码审查Review工具 是一个旨在自动化代码审查流程的工具。它通过集成版本控制系统(如 GitHub 和 GitLab)的 Webhook,利用大型语言模型(LLM)对代码变更进行分析,并将审查意见反馈到相应的 Pull Request 或 Merge Request 中。此外,它还支持将审查结果通知到企业微信等通讯工具。 一个基于 LLM 的自动化代码审查助手。通过 GitHub/GitLab Webhook 监听 PR/MR 变更,调用 AI 分析代码,并将审查意见自动评论到 PR/MR,同时支持多种通知渠道。 主要功能 多平台支持: 集成 GitHub 和 GitLab Webhook,监听 Pull Request / Merge Request 事件。 智能审查模式: 详细审查 (/github_webhook, /gitlab_webhook): AI 对每个变更文件进行分析,旨在找出具体问题。审查意见会以结构化的形式(例如,定位到特定代码行、问题分类、严重程度、分析和建议)逐条评论到 PR/MR。AI 模型会输出 JSON 格式的分析结果,系统再将其转换为多条独立的评论。 通用审查 (/github_webhook_general, /gitlab_webhook_general): AI 对每个变更文件进行整体性分析,并为每个文件生成一个 Markdown 格式的总结性评论。 自动化流程: 自动将 AI 审查意见(详细模式下为多条,通用模式下为每个文件一条)发布到 PR/MR。 在所有文件审查完毕后,自动在 PR/MR 中发布一条总结性评论。 即便 AI 未发现任何值得报告的问题,也会发布相应的友好提示和总结评论。 异步处理审查任务,快速响应 Webhook。 通过 Redis 防止对同一 Commit 的重复审查。 灵活配置: 通过环境变量设置基
【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器的状态空间平均模型的建模策略。该方法通过数学建模手段对直流微电网系统进行精确的状态空间描述,并对其进行线性化处理,以便于系统稳定性分析与控制器设计。文中结合Matlab代码实现,展示了建模与仿真过程,有助于研究人员理解和复现相关技术,推动直流微电网系统的动态性能研究与工程应用。; 适合人群:具备电力电子、电力系统或自动化等相关背景,熟悉Matlab/Simulink仿真工具,从事新能源、微电网或智能电网研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网的动态建模方法;②学习DC-DC变换器在耦合条件下的状态空间平均建模技巧;③实现系统的线性化分析并支持后续控制器设计(如电压稳定控制、功率分配等);④为科研论文撰写、项目仿真验证提供技术支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐步实践建模流程,重点关注状态变量选取、平均化处理和线性化推导过程,同时可扩展应用于更复杂的直流微电网拓扑结构中,提升系统分析与设计能力。
内容概要:本文介绍了基于物PINN驱动的三维声波波动方程求解(Matlab代码实现)理信息神经网络(PINN)求解三维声波波动方程的Matlab代码实现方法,展示了如何利用PINN技术在无需大量标注数据的情况下,结合物理定律约束进行偏微分方程的数值求解。该方法将神经网络与物理方程深度融合,适用于复杂波动问题的建模与仿真,并提供了完整的Matlab实现方案,便于科研人员理解和复现。此外,文档还列举了多个相关科研方向和技术服务内容,涵盖智能优化算法、机器学习、信号处理、电力系统等多个领域,突出其在科研仿真中的广泛应用价值。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及工程技术人员,尤其适合从事计算物理、声学仿真、偏微分方程数值解等相关领域的研究人员; 使用场景及目标:①学习并掌握PINN在求解三维声波波动方程中的应用原理与实现方式;②拓展至其他物理系统的建模与仿真,如电磁场、热传导、流体力学等问题;③为科研项目提供可复用的代码框架和技术支持参考; 阅读建议:建议读者结合文中提供的网盘资源下载完整代码,按照目录顺序逐步学习,重点关注PINN网络结构设计、损失函数构建及物理边界条件的嵌入方法,同时可借鉴其他案例提升综合仿真能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值