一、堆排序算法
① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
③由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n-2].keys≤R[n-1..n].keys,同样要将R[1..n-2]调整为堆。
……
直到无序区只有一个元素为止。
二、Java实现
package com.pengli.sort;
public class HeapSort {
public static void main(String[] args) {
int[] data5 = new int[] { 5, 3, 6, 2, 1, 9, 4, 8, 7 };
print(data5);
heapSort(data5);
System.out.println("排序后的数组:");
print(data5);
}
public static void swap(int[] data, int i, int j) {
if (i == j) {
return;
}
data[i] = data[i] + data[j];
data[j] = data[i] - data[j];
data[i] = data[i] - data[j];
}
public static void heapSort(int[] data) {
for (int i = 0; i < data.length; i++) {
createMaxdHeap(data, data.length - 1 - i);
swap(data, 0, data.length - 1 - i);
print(data);
}
}
public static void createMaxdHeap(int[] data, int lastIndex) {
for (int i = (lastIndex - 1) / 2; i >= 0; i--) {
// 保存当前正在判断的节点
int k = i;
// 若当前节点的子节点存在
while (2 * k + 1 <= lastIndex) {
// biggerIndex总是记录较大节点的值,先赋值为当前判断节点的左子节点
int biggerIndex = 2 * k + 1;
if (biggerIndex < lastIndex) {
// 若右子节点存在,否则此时biggerIndex应该等于 lastIndex
if (data[biggerIndex] < data[biggerIndex + 1]) {
// 若右子节点值比左子节点值大,则biggerIndex记录的是右子节点的值
biggerIndex++;
}
}
if (data[k] < data[biggerIndex]) {
// 若当前节点值比子节点最大值小,则交换2者得值,交换后将biggerIndex值赋值给k
swap(data, k, biggerIndex);
k = biggerIndex;
} else {
break;
}
}
}
}
public static void print(int[] data) {
for (int i = 0; i < data.length; i++) {
System.out.print(data[i] + "\t");
}
System.out.println();
}
}