Spring AI 系列之三十五 - Spring AI Alibaba-Graph框架之MCP

之前做个几个大模型的应用,都是使用Python语言,后来有一个项目使用了Java,并使用了Spring AI框架。随着Spring AI不断地完善,最近它发布了1.0正式版,意味着它已经能很好的作为企业级生产环境的使用。对于Java开发者来说真是一个福音,其功能已经能满足基于大模型开发企业级应用。借着这次机会,给大家分享一下Spring AI框架。

注意由于框架不同版本改造会有些使用的不同,因此本次系列中使用基本框架是 Spring AI-1.0.0,JDK版本使用的是19,Spring-AI-Alibaba-1.0.0.3-SNAPSHOT
代码参考: https://github.com/forever1986/springai-study

上一章演示了Graph框架的并行执行流程,并剖析了其中ParallelNode的实现逻辑。这一章来讲一下Graph如何访问MCP。

1 示例演示

代码参考lesson26子模块中的graph-mcp子模块

示例说明:通过构建一个Graph图,其中定义一个访问MCP节点

在这里插入图片描述

1.1 初始化

1)本次MCP服务采用前面lesson10子模块的sse-server子模块作为MCP Server,启动该服务

在这里插入图片描述

2)在lesson26子模块下,新建graph-mcp子模块,其pom引入如下:

<dependencies>
    <!-- 引入智谱的model插件 -->
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-model-zhipuai</artifactId>
    </dependency>
    <dependency>
        <groupId>com.alibaba.cloud.ai</groupId>
        <artifactId>spring-ai-alibaba-graph-core</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.ai</groupId>
        <artifactId>spring-ai-starter-mcp-client-webflux</artifactId>
    </dependency>
    <!-- 需要引入gson插件 -->
    <dependency>
        <groupId>com.google.code.gson</groupId>
        <artifactId>gson</artifactId>
        <version>2.8.6</version>
    </dependency>
</dependencies>

3)新建application.properties配置文件

# 聊天模型
spring.ai.zhipuai.api-key=你的智谱API KEY
spring.ai.zhipuai.chat.options.model=GLM-4-Flash-250414
spring.ai.zhipuai.chat.options.temperature=0.7

# 指定mcp-servers的URL
spring.ai.mcp.client.type=SYNC
spring.ai.mcp.client.sse.connections.server1.url=http://localhost:8081

spring.ai.graph.nodes.node2servers.mcp-node=server1

4)新建McpNodeProperties读取配置spring.ai.graph.nodes开头

import org.springframework.boot.context.properties.ConfigurationProperties;

import java.util.Map;
import java.util.Set;

/**
 * 为了方便解析配置多少个MCP服务
 */
@ConfigurationProperties(prefix = McpNodeProperties.PREFIX)
public class McpNodeProperties {

    public static final String PREFIX = "spring.ai.graph.nodes";

    private Map<String, Set<String>> node2servers;

    public Map<String, Set<String>> getNode2servers() {
        return node2servers;
    }

    public void setNode2servers(Map<String, Set<String>> node2servers) {
        this.node2servers = node2servers;
    }
}

1.2 构建图和节点

1)新建McpClientToolCallbackProvider类,用于读取toolcall

import com.demo.lesson26.mcp.config.McpNodeProperties;
import org.apache.commons.compress.utils.Lists;
import org.glassfish.jersey.internal.guava.Sets;
import org.springframework.ai.mcp.McpToolUtils;
import org.springframework.ai.mcp.client.autoconfigure.properties.McpClientCommonProperties;
import org.springframework.ai.tool.ToolCallback;
import org.springframework.ai.tool.ToolCallbackProvider;
import org.springframework.ai.tool.definition.ToolDefinition;
import org.springframework.stereotype.Service;

import java.util.List;
import java.util.Set;

@Service
public class McpClientToolCallbackProvider {

    private final ToolCallbackProvider toolCallbackProvider;

    private final McpClientCommonProperties commonProperties;

    private final McpNodeProperties mcpNodeProperties;

    public McpClientToolCallbackProvider(ToolCallbackProvider toolCallbackProvider,
                                         McpClientCommonProperties commonProperties, McpNodeProperties mcpNodeProperties) {
        this.toolCallbackProvider = toolCallbackProvider;
        this.commonProperties = commonProperties;
        this.mcpNodeProperties = mcpNodeProperties;
    }

    /**
     * 通过配置的spring.ai.graph.nodes的名称,获取从Spring AI中获取到的toolCall
     */
    public Set<ToolCallback> findToolCallbacks(String nodeName) {

        // 获取配置文件中spring.ai.graph.nodes开头的数据
        Set<ToolCallback> defineCallback = Sets.newHashSet();
        Set<String> mcpClients = mcpNodeProperties.getNode2servers().get(nodeName);
        if (mcpClients == null || mcpClients.isEmpty()) {
            return defineCallback;
        }

        List<String> exceptMcpClientNames = Lists.newArrayList();
        for (String mcpClient : mcpClients) {
            // my-mcp-client
            String name = commonProperties.getName();
            // mymcpclientserver1
            String prefixedMcpClientName = McpToolUtils.prefixedToolName(name, mcpClient);
            exceptMcpClientNames.add(prefixedMcpClientName);
        }

        // 从Spring AI的MCP客户端获取到的toolCall,放到defineCallback,以方便注册到MCPNode中的chatClient
        ToolCallback[] toolCallbacks = toolCallbackProvider.getToolCallbacks();
        for (ToolCallback toolCallback : toolCallbacks) {
            ToolDefinition toolDefinition = toolCallback.getToolDefinition();
            String name = toolDefinition.name();
            for (String exceptMcpClientName : exceptMcpClientNames) {
                if (name.startsWith(exceptMcpClientName)) {
                    defineCallback.add(toolCallback);
                }
            }
        }
        return defineCallback;
    }
}

2)构建McpNode节点

import com.alibaba.cloud.ai.graph.OverAllState;
import com.alibaba.cloud.ai.graph.action.NodeAction;
import com.demo.lesson26.mcp.tool.McpClientToolCallbackProvider;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.ai.tool.ToolCallback;
import reactor.core.publisher.Flux;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;

/**
 * 自定义MCP节点
 */
public class McpNode implements NodeAction {

    private static final Logger logger = LoggerFactory.getLogger(McpNode.class);

    private static final String NODENAME = "mcp-node";

    private final ChatClient chatClient;

    public McpNode(ChatClient.Builder chatClientBuilder, McpClientToolCallbackProvider mcpClientToolCallbackProvider) {
        // 获取mcp-node前缀定义的工具,注册到chatClient中
        Set<ToolCallback> toolCallbacks = mcpClientToolCallbackProvider.findToolCallbacks(NODENAME);
        for (ToolCallback toolCallback : toolCallbacks) {
            logger.info("Mcp Node load ToolCallback: " + toolCallback.getToolDefinition().name());
        }

        this.chatClient = chatClientBuilder
                .defaultToolCallbacks(toolCallbacks.toArray(ToolCallback[]::new))
                .build();
    }


    @Override
    public Map<String, Object> apply(OverAllState state) {
        String query = state.value("query", "");
        Flux<String> streamResult = chatClient.prompt(query).stream().content();
        String result = streamResult.reduce("", (acc, item) -> acc + item).block();

        HashMap<String, Object> resultMap = new HashMap<>();
        resultMap.put("mcpcontent", result);

        return resultMap;
    }
}

3)设置配置类McpGaphConfiguration构建图:

import com.alibaba.cloud.ai.graph.GraphRepresentation;
import com.alibaba.cloud.ai.graph.KeyStrategy;
import com.alibaba.cloud.ai.graph.KeyStrategyFactory;
import com.alibaba.cloud.ai.graph.StateGraph;
import com.alibaba.cloud.ai.graph.action.AsyncNodeAction;
import com.alibaba.cloud.ai.graph.exception.GraphStateException;
import com.alibaba.cloud.ai.graph.state.strategy.ReplaceStrategy;
import com.demo.lesson26.mcp.node.McpNode;
import com.demo.lesson26.mcp.tool.McpClientToolCallbackProvider;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.ai.chat.client.ChatClient;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.HashMap;

@Configuration
@EnableConfigurationProperties({ McpNodeProperties.class })
public class McpGaphConfiguration {

    private static final Logger logger = LoggerFactory.getLogger(McpGaphConfiguration.class);

    @Autowired
    private McpClientToolCallbackProvider mcpClientToolCallbackProvider;

    @Bean
    public StateGraph mcpGraph(ChatClient.Builder chatClientBuilder) throws GraphStateException {
        KeyStrategyFactory keyStrategyFactory = () -> {
            HashMap<String, KeyStrategy> keyStrategyHashMap = new HashMap<>();

            // 用户输入
            keyStrategyHashMap.put("query", new ReplaceStrategy());
            keyStrategyHashMap.put("mcpcontent", new ReplaceStrategy());
            return keyStrategyHashMap;
        };

        // 构建图
        StateGraph stateGraph = new StateGraph(keyStrategyFactory)
                .addNode("mcp", AsyncNodeAction.node_async(new McpNode(chatClientBuilder, mcpClientToolCallbackProvider)))

                .addEdge(StateGraph.START, "mcp")
                .addEdge("mcp", StateGraph.END);

        // 添加 PlantUML 打印
        GraphRepresentation representation = stateGraph.getGraph(GraphRepresentation.Type.PLANTUML,
                "mcp flow");
        logger.info("\n=== mcp UML Flow ===");
        logger.info(representation.content());
        logger.info("==================================\n");

        return stateGraph;
    }
}

4)新建启动类:

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Lesson26MCPApplication {

    public static void main(String[] args) {
        SpringApplication.run(Lesson26MCPApplication.class, args);
    }

}

1.3 演示效果

http://localhost:8080/graph/mcp

在这里插入图片描述

结语:本章演示了Graph中如何访问MCP服务,可见其架构的可扩展性,在Spring AI Alibaba中有一个com.alibaba.cloud.ai.graph.node.McpNode的MCP访问节点实现,但是该节点只是一个固定MCP访问,即需要传入方法和参数,并没有配置大模型。如果你构建的Graph中只是简单调用MCP服务,则可以直接使用com.alibaba.cloud.ai.graph.node.McpNode节点。前面通过几章对Graph框架进行了比较详细的讲解,这是因为在实际应用中,一个应用一般都是一个流程,而非一撮而就,所以使用Graph场景非常多。下一章将讲Spring AI Alibaba的nl2sql,这个是一个基于Graph构建的生成SQL的实际案例,你就可以见识到复杂的工作流。

Spring AI系列上一章:《Spring AI 系列之三十四 - Spring AI Alibaba-Graph框架之并行执行

Spring AI系列下一章:《Spring AI 系列之三十六 - Spring AI Alibaba-nl2sql

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

linmoo1986

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值