湖人双塔的高度

拜纳姆 身高218厘米 臂展236厘米 弹跳86厘米 体重128公斤(约285磅) 加索尔 身高215厘米 臂展231厘米 弹跳68厘米 体重120公斤(约260磅) 说明:关于拜纳姆的身高和臂展,以及加索尔的身高和臂展,一直都没有确切的数据!因为NBA官方关于球员的这些数据,很多都是球员选秀时自己随意报的,很少有人随后去更改,第一手资料只有球队管理层才知道!加索尔2008年参加北京奥运会时测出来的身高是215厘米,球场目测,由于加索尔长着长头发,而拜纳姆在光头的情况下还比加索尔高一个头顶,故勉强认为拜纳姆比加索尔高3厘米。同时,拜纳姆和加索尔的手臂长度相当,但是,拜纳姆的肩膀比加索尔宽,所以,姑且认为拜纳姆的臂展比加索尔长5厘米!

资源下载链接为: https://pan.quark.cn/s/140386800631 通用大模型文本分类实践的基本原理是,借助大模型自身较强的理解推理能力,在使用时需在prompt中明确分类任务目标,并详细解释每个类目概念,尤其要突出类目间的差别。 结合in-context learning思想,有效的prompt应包含分类任务介绍及细节、类目概念解释、每个类目对应的例子待分类文本。但实际应用中,类目样本较多易导致prompt过长,影响大模型推理效果,因此可先通过向量检索缩小范围,再由大模型做最终决策。 具体方案为:离线时提前配置好每个类目的概念及对应样本;在线时先对给定query进行向量召回,再将召回结果交给大模型决策。 该方法不更新任何模型参数,直接使用开源模型参数。其架构参考GPT-RE并结合相关实践改写,加入上下文学习以提准确度,还使用BGE作为向量模型,K-BERT提取文本关键词,拼接召回的相似例子作为上下文输入大模型。 代码实现上,大模型用Qwen2-7B-Instruct,Embedding采用bge-base-zh-v1.5,向量库选择milvus。分类主函数的作用是在向量库中召回相似案例,拼接prompt后输入大模型。 结果方面,使用ICL时accuracy达0.94,比bert文本分类的0.98低0.04,错误类别6个,处理时添加“家居”类别,影响不大;不使用ICL时accuracy为0.88,错误58项,可能与未修改prompt有关。 优点是无需训练即可有较好结果,例子优质、类目界限清晰时效果更佳,适合围绕通用大模型api打造工具;缺点是上限不,仅针对一个分类任务部署大模型不划算,推理速度慢,icl的token使用多,用收费api会有额外开销。 后续可优化的点是利用key-bert提取的关键词,因为核心词语有时比语意更重要。 参考资料包括
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值