深度学习【31】mobileNet

本文深入探讨了MobileNet的关键技术——Depthwise卷积,详细对比了标准卷积与Depthwise卷积的参数数量及计算量,揭示了MobileNet通过引入Depthwise卷积实现模型轻量化的设计理念。

mobileNet出来很久了,这边主要是做个笔记,不然很快就忘记了。mobileNet的精髓是提出了depthwise卷积层。

标准的卷积层的参数个数是DKDKMNDK∗DK∗M∗N(卷积核大小×卷积核大小×输入通道数×输出通道数,如卷积核是一个3*3,输入输出是256通道,则有3*3*256*256)。其计算量是:

DKDKMNDFDFDK∗DK∗M∗N∗DF∗DF

DFDFDF∗DF 是输入的feature map的大小。

depthwise卷积

首先我们看看标准卷积的计算过程(图画的很渣):
这里写图片描述
上图的卷积,输入通道为4,输出为2,因此有4*2个卷积核。in表示输入,out表示输出。我们可以看到每个输出都需要有4个卷积核分别在4张输入特征图进行卷积,然后相加得到。

而depthwise卷积过程如下:
这里写图片描述
输入特征图个数为2,输出特征图也为2,并且只需要两个卷积核。如果按照标准卷积,需要2*2=4个卷积核。

那么depthwise的卷积参数个数为DKDKMDK∗DK∗M,计算量为:

DKDKMDFDFDK∗DK∗M∗DF∗DF

由于depthwise卷积的输入输出通道必须一样,因此为了达到标准卷积的输入为M,输出为N的效果。论文在depthwise卷积后面加入了一个pointwise卷积,也就是卷积核为1*1的卷积。depthwise+pointwise=可分离卷积。这样可分离卷积的计算量为:
这里写图片描述

那么标准卷积与可分离卷积的计算比为:
这里写图片描述
可分离卷积大概比标准卷积少了8到9倍的计算量。

论文给出的标准卷积与可分离卷积的结构图:
这里写图片描述

整个mobilenet的结构:
这里写图片描述

论文后面加入了宽度因子和网络输入分辨率因子。

实验结果

imageNet
这里写图片描述

物体检测
这里写图片描述
模型小了很多啊,不管是在SSD还是RCNN,大概24M而已。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值