How to use pthread in cocos2d-x

本文详细介绍了在Cocos2d-x中使用pthread时需注意的限制,包括资源加载、条件等待等操作的注意事项,并提供了一个简单的pthread示例,展示如何在独立线程中运行函数并传递结构体。

Now, you can use pthread in cocos2d-x, but there are some limitations.

1. Don't call any functions which invokes CCObject::retain()CCObject::release() or CCObject::autorelease(), because CCAutoreleasePool are not thread-safe. Please refer to Reference Count and AutoReleasePool in Cocos2d-x for more details. Cocos2d-x use CCAutoreleasePool every where in its framework, so my suggestion is that, don't invoke any cocos2d-x API in a new thread except Data Structures.

2. If you want to load resources in a new thread, you can use CCTextureCache::addImageAsync()

3. pthread_cond_wait() seems have a bug, it can not wait at the first time, but works properly in subsequence.

If we make retain(), release() and autorealese() thread-safe, then mutex would be required. For the reason that cocos2d-x framework releases the autorelease pool at each end of message loop, using mutex may cause performance issue.

By the way, OpenGL context is not thread-safe, which you should always keep in mind.

cocos2d-x/extensions/network/HttpClient.cpp uses pthread_t and pthread_mutex_t to create network thread. You can look into it as a sample.

Simple pthread example that shows how to run a function in a separate thread, pass a structure to it and set a mutex:

 1pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
 2
 3struct SimpleStructure
 4{
 5    int data;
 6    float otherData;
 7};
 8
 9void* ThreadFunction(void* arg)
10{
11    pthread_mutex_lock(&mutex);
12    SimpleStructure* args = (SimpleStructure*)arg;
13    // do something with args->data and args->otherData
14    delete args;
15    pthread_mutex_unlock(&mutex);
16    return NULL;
17}
18
19void CreateThread()
20{
21    pthread_t thread;
22    SimpleStructure* args = new SimpleStructure();
23    args->data = 1;
24    args->otherData = 2.0f;
25    pthread_create(&thread, NULL, &ThreadFunction, args);
26}
内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值