参考文章:CoordAttention - 知乎 (zhihu.com)
一、CA注意力简介
在轻量级网络上的研究表明,通道注意力会给模型带来比较显著的性能提升,但是通道注意力通常会忽略对生成空间选择性注意力图非常重要的位置信息。因此,新加坡国立大学的Qibin Hou等人提出了一种为轻量级网络设计的新的注意力机制,该机制将位置信息嵌入到了通道注意力中,称为coordinate attention(简称CoordAttention,下文也称CA),该论文已被CVPR2021收录。不同于通道注意力将输入通过2D全局池化转化为单个特征向量,CoordAttention将通道注意力分解为两个沿着不同方向聚合特征的1D特征编码过程。这样的好处是可以沿着一个空间方向捕获长程依赖,沿着另一个空间方向保留精确的位置信息。然后,将生成的特征图分别编码,形成一对方向感知和位置敏感的特征图,它们可以互补地应用到输入特征图来增强感兴趣的目标的表示。
CoordAttention简单灵活且高效,可以插入经典的轻量级网络(如MobileNetV2)在几乎不带来额外计算开销的前提下,提升网络的精度。实验表明,CoordAttention不仅仅对于分类任务有不错的提高,对目标检测、实例分割这类密集预测的任务,效果提升更加明显。
考虑到轻量级网络有限的计算能力,目前最流行的注意力机制仍然是SENet提出的SE Attention。遗憾的是,SE模块只考虑了通道间信息的编码而忽视了位置信息的重要性,而位置信息其实对于很多需要捕获目标结构的视觉任务至关重要。因此,后来CBAM等方法通过减少通道数继而使用大尺寸卷积来利用位置信息。然而,