【机器学习】生成对抗网络 (Generative Adversarial Networks | GAN)

生成对抗网络 (Generative Adversarial Networks | GAN)

介绍

生成对抗网络 (Generative Adversarial Networks,简称GAN) 是一种强大的深度学习模型,用于生成具有逼真感的图像、音频和文本等内容。GAN 的核心理念是通过训练两个神经网络,生成器 (Generator) 和判别器 (Discriminator),它们相互对抗、相互学习,以提高生成器生成数据的质量。本文将介绍GAN的基本原理、工作流程以及应用场景,旨在为新手小白提供一个简单易懂的入门指南。

原理

GAN 的原理源于博弈论中的对抗思想。生成器的目标是生成尽可能逼真的数据,而判别器的目标是尽可能准确地区分真实数据和生成器生成的数据。二者通过对抗性训练不断优化自身,最终达到动态平衡。

工作流程

  1. 生成器 (Generator): 首先,生成器接收一个随机噪声向量作为输入,通过神经网络逐渐将其转换成与真实数据相似的图像。初始阶段生成的图像可能非常模糊和不真实。

  2. 判别器 (Discriminator): 同时,判别器接收两种类型的输入:真实数据和由生成器生成的数据。其目标是区分这两种数据,并输出概率值,表示输入数据为真实数据的可能性。

  3. 对抗训练 (Adversarial Training): 在训练过程中,生成器和判别器相互竞争、相互学习。生成器试图生成更逼真的数据以愚弄判别器,而判别器则努力提高自己的识别能力以区分真假数据。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值