Lowest Common Ancestor of a Binary Search Tree
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______6______
/ \
___2__ ___8__
/ \ / \
0 _4 7 9
/ \
3 5
For example, the lowest common ancestor (LCA) of nodes 2 and 8 is 6. Another example is LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition.
思路: 由于是二叉搜索树,因此左子树的值一定小于右子树。根据这个性质就可写出下面的算法。对比值,然后用递归的方法做。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if(root==NULL || p==NULL || q==NULL)
return NULL;
if(root->val==p->val || root->val==q->val)
return root;
if(root->val < p->val && root->val < q->val)
lowestCommonAncestor(root->right, p, q);
else if(root->val > p->val && root->val > q->val)
lowestCommonAncestor(root->left, p, q);
else
return root;
}
};
引申: 如果不是二叉搜索树,只是一个简单的树的话,可能需要记录下p, q的位置,然后再找他们的LCA。
(http://blog.youkuaiyun.com/xudli/article/details/46838747)