一、题目
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print the root of the resulting AVL tree in one line.
Sample Input 1:
5
88 70 61 96 120
Sample Output 1:
70
Sample Input 2:
7
88 70 61 96 120 90 65
Sample Output 2:
88
二、题目大意
求平衡二叉树根节点数值。
三、考点
平衡二叉树
四、注意
1、虽然很基础,但如果之前不了解平衡二叉树,,,
五、代码
#include<iostream>
#include<algorithm>
using namespace std;
struct node {
int val;
struct node *right, *left;
};
node *rotateLeft(node *root) {
node *t = root->right;
root->right = t->left;
t->left = root;
return t;
}
node *rotateRight(node *root) {
node *t = root->left;
root->left = t->right;
t->right = root;
return t;
}
node *rotateLeftRight(node *root) {
root->left = rotateLeft(root->left);
return rotateRight(root);
}
node *totateRightLeft(node *root) {
root->right = rotateRight(root->right);
return rotateLeft(root);
}
int getHeight(node *root) {
if (root == NULL)
return 0;
else
return max(getHeight(root->left), getHeight(root->right)) + 1;
}
node *insert(node *root, int val) {
if (root == NULL) {
root = new node();
root->val = val;
root->left = NULL;
root->right = NULL;
}
else if (root->val > val) {
root->left = insert(root->left, val);
if (getHeight(root->left) - getHeight(root->right) == 2) {
if (val < root->left->val)
root=rotateRight(root);
else
root=rotateLeftRight(root);
}
}
else {
root->right = insert(root->right, val);
if (getHeight(root->right) - getHeight(root->left) == 2) {
if (val > root->right->val)
root=rotateLeft(root);
else
root=totateRightLeft(root);
}
}
return root;
}
int main() {
//read
int n;
cin >> n;
node *root=NULL;
for (int i = 0; i < n; ++i) {
int a;
cin >> a;
root=insert(root, a);
}
//output
cout << root->val;
system("pause");
return 0;
}