字符串小结

1.字符串概念
字符串是位于双引号中的字符序列
在内存中以“\0”结束,所占字节比实际多一个
2.字符串的初始化
- 在C语言中没有专门的字符串变量,通常用一个字符数组来存放一个字符串。前面介绍字符串常量时,已说明字符串总是以‘\0’作为串的结束符。因此当把一个字符串存入一个数组时,也把结束符‘\0’存入数组,并以此作为该字符串是否结束的标志。有了‘\0’标志后,就不必再用字符数组的长度来判断字符串的长度了。

- 初始化
    char name[9] = "ucc"; //在内存中以“\0”结束, \0ASCII码值是0
char name1[9] = {'u,'c','c','\0'};
char name2[9] = {'u','c','c',0};
    char name3[9] = {'u','c','c'};//静态数组如果没有赋值默认就是0,0就相当于\0

- 错误的初始化方式
     //不正确地写法,结尾没有\0 ,只是普通的字符数组
char name4[] = {'u','c','c'};
     //    \0的作用:字符串结束的标志
char name[] = "c\0ool";
printf("name = %s\n",name);
输出结果: c
使用的格式字符串为“%s”,表示输入、输出的是一个字符串
字符串的输出
输出
%s的本质就是根据传入的name的地址逐个去取数组中的元素然后输出,直到遇到\0位置
字符串输入

charch[10];
scanf("%s",ch);

注意:
对一个字符串数组, 如果不做初始化赋值, 必须指定数组长度
ch最多存放由9个字符构成的字符串,其中最后一个字符的位置要留给字符串的结尾标示‘\0’当用scanf函数输入字符串时,字符串中不能含有空格,否则将以空格作为串的结束符。

小练:
使用scanf() 从控制台输入一个字符串,然后使用printf() 将其输出。
charstr[9];
scanf("%s", str);
printf("str = %s\n", str);
利用sizeof字符串长度
因为字符串在内存中是逐个字符存储的,一个字符占用一个字节,所以字符串的结束符长度也是占用的内存单元的字节数。

char name[] = "65879";
int size = sizeof(name);// 包含\0
printf("size = %d\n", size);
输出结果:6

利用系统函数
格式: strlen(字符数组名)
功能:测字符串的实际长度(不含字符串结束标志‘\0’)并作为函数返回值。

char name[] = "65879";
size_tlen = strlen(name2);
printf("len = %lu\n", len);
输出结果:5
<think>好的,用户想了解字符串操作实验的总结或关键点。我需要先回顾一下相关的引用内容,尤其是引用[3]和引用[4],因为这些直接涉及字符串操作和性能比较。 首先,引用[4]中提到了在Java中使用同的字符串拼接方法(如+运算符、concat()方法和StringBuilder)的性能差异。实验显示StringBuilder明显更快,这点非常重要,应该作为关键点之一。需要解释为什么会有这样的性能差异,比如String的可变性导致每次拼接都生成新对象,而StringBuilder则是可变的对象,减少了内存分配和复制的开销。 然后引用[3]讨论了字符串拷贝函数,指出在拷贝指定长度时需要注意手动添加结束符'\0',否则可能导致问题。这可能涉及到C语言中的字符串处理,但用户的问题比较通用,可能需要总结同编程语言中字符串处理的注意事项,比如可变性、内存管理、结束符处理等。 另外,用户提供的引用中还有关于环境变量设置的问题(引用[2]),但可能和当前问题关联大,暂时考虑。引用[1]关于字符串比较的大小写问题,可能和字符串操作相关,比如比较函数的使用,但用户的问题更侧重于实验总结,所以可能需要深入这点,除非实验中有涉及比较操作。 需要组织关键点,可能包括字符串可变性、同拼接方式的性能差异、内存管理、结束符处理、安全性和编码问题等。结论部分应强调在实际开发中选择合适的字符串操作方法,特别是循环体内使用StringBuilder的重要性。 还要注意用户要求回答结构清晰,分点说明,使用中文,并正确应用LaTeX格式。例如,在提到时间复杂度时,使用$O(n^2)$和$O(n)$这样的数学表达式。同时,生成相关问题,可能涉及优化方法、应用场景、同语言差异等。 检查是否有遗漏的关键点,比如字符串函数的使用注意事项,比如拷贝时自动添加结束符,需要手动添加,这也是实验中容易出错的地方。另外,可能要考虑字符串池的概念,或者编码问题如UTF-8处理,但根据引用内容,可能主要围绕性能和内存管理。 总结下来,关键点包括: 1. 字符串可变性导致的性能问题。 2. 同拼接方法的性能对比。 3. 字符串操作的内存管理(如结束符处理)。 4. 安全性问题(如缓冲区溢出)。 5. 编码和字符集的影响。 结论要强调实验中的性能差异,并推荐最佳实践,如使用StringBuilder处理大量拼接。</think>### 字符串操作实验总结 #### 关键点分析 1. **字符串拼接性能差异** 在循环体内频繁拼接字符串时,同方法的性能差异显著: - **`+`运算符**:每次操作会创建新字符串对象,时间复杂度为$O(n^2)$。例如,拼接10,000次耗时约**500ms**。 - **`concat()`方法**:与`+`类似,仍涉及对象频繁创建,但略高效,耗时约**400ms**。 - **`StringBuilder`**:通过可变缓冲区直接追加字符,时间复杂度为$O(n)$,耗时仅约**1ms**,性能提升约**525倍**[^4]。 2. **字符串可变性** Java中`String`对象可变,每次修改都会生成新对象,导致内存浪费和性能损耗。`StringBuilder`通过动态扩展缓冲区避免了这一问题[^4]。 3. **内存管理与结束符处理** 在C语言等底层操作中,手动拷贝字符串需注意**结束符`\0`的添加**,否则可能引发未定义行为。例如,`strncpy()`函数会自动添加结束符,需显式赋值[^3]。 4. **安全性问题** 直接操作字符数组时,需防范缓冲区溢出风险(如`strcpy`检查目标缓冲区大小)。应使用安全函数(如`strncpy`)或动态内存分配。 5. **字符集与编码影响** 字符串比较或处理时,字符集(如UTF-8、ASCII)可能影响结果。例如,二进制比较区分大小写,而某些字符集可能区分[^1]。 #### 实验结论 - **高频拼接场景**:优先选择`StringBuilder`或`StringBuffer`(线程安全版本)。 - **短字符串操作**:`+`或`concat()`可读性更佳,性能影响可忽略。 - **底层操作规范**:手动处理字符串时需严格管理内存和结束符[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值