以下代码根据这篇文章修改:http://blog.youkuaiyun.com/guohuifengby/article/details/62424299
运行环境:
win7
numpy-1.13.1+mkl-cp36-cp36m-win_amd64.whl
scipy-0.19.1-cp36-cp36m-win_amd64.whl
#encoding:utf-8
from scipy.misc import imsave
import numpy as np
# 解压缩,返回解压后的字典
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
# 生成训练集图片,如果需要png格式,只需要改图片后缀名即可。
for j in range(1, 6):
# 读取当前目录下的data_batch12345文件,dataName其实也是data_batch文件的路径,本文和脚本文件在同一目录下。
dataName = "data_batch_" + str(j)
Xtr = unpickle(dataName)
print (dataName + " is loading...")
for i in range(0, 10000):
img = np.reshape(Xtr[b'data'][i], (3, 32, 32)) # Xtr['data']为图片二进制数据
img = img.transpose(1, 2, 0) # 读取image
# Xtr['labels']为图片的标签,值范围0-9,本文中,train文件夹需要存在,并与脚本文件在同一目录下。
picName = 'train/' + str(Xtr[b'labels'][i]) + '_' + str(i + (j - 1)*10000) + '.jpg'
imsave(picName, img)
print (dataName + " loaded.")
print ("test_batch is loading...")
# 生成测试集图片
testXtr = unpickle("test_batch")
for i in range(0, 10000):
img = np.reshape(testXtr[b'data'][i], (3, 32, 32))
img = img.transpose(1, 2, 0)
picName = 'test/' + str(testXtr[b'labels'][i]) + '_' + str(i) + '.jpg'
imsave(picName, img)
print ("test_batch loaded.")