Windows 7 版本知多少(Win 7 N/K/KN/E)

本文详细介绍了Windows7的四个特殊版本:N、K、KN和E。这些版本针对不同市场和地区进行了定制,如欧洲和韩国市场,并在功能上有所调整,例如移除WindowsMediaPlayer、WindowsMovieMaker或InternetExplorer8等组件。

Windows 7 版本知多少(Win 7 N/K/KN/E)

Is there any special SKU(Special Kit Unit) version of Windows 7 that exists? (Windows 7 N, Windows 7 K, Windows 7 KN, Windows 7 E)

Yes, there is Windows 7 N, Windows 7 K, Windows 7 KN and Windows 7 E, where each editions of Windows 7 will also have in these flavors other than standard version.

Windows 7 N: Windows 7 N is meant for European market, and includes the same functionality as Windows 7, except that it does not include Windows Media Player and related technologies such as Windows Movie Maker.

#简言之,Win7 N是为欧洲的市场特别定制,除了不包含Windows Media Player及相关技术 其他功能与Win7 的一样。

Windows 7 K: Windows 7 K is meant for Korean market, and includes the same functionality as ordinary Windows 7, except that it includes links to a Media Player Center Web site and a Messenger Center Web site.

#简言之,Win7 K是为韩国的市场特别定制,与Win7有一样的功能,K这个版本还包含Media Player Center & Messerger Center的网站链接。

Windows 7 KN: Windows 7 KN is meant for Korean market, and includes the same functionality as Windows 7 K, except that it does not include Windows Media Player and related technologies such as Windows Movie Maker, links to download Windows Live Messenger, or links to a Media Player Center Web Site and a Messenger Center Web site.

#简言之,把KN的特点综合一下就是这个Win7 KN

Windows 7 E: Windows 7 E is meant for European Commission countries, including UK, and includes the same functionality as ordinary standard flavor of Windows 7, except that it does not include Internet Explorer 8 (IE8).

#简言之,Win7 E是为欧盟国家包括英国特别定制,与Win7有一样的功能,但不包含IE8

我加入蒙哥马利模乘优化反而更慢了,中间频繁调用蒙哥马利域,但是正确的应该是开头结尾调用两次,我应该怎么把代码优化import random import time import math def dynamic_window(exponent, max_width=4): """动态分窗:返回从低位到高位的窗口值列表""" bin_str = bin(exponent)[2:] windows = [] i = len(bin_str) while i > 0: width = min(i, max_width) win_val = int(bin_str[max(0, i - width):i], 2) windows.append(win_val) i -= width return windows[::-1] # 调整为高位到低位顺序 def precompute_table(base, mod, window_size): """预计算基底表:base^0 到 base^(2^window_size-1) mod mod""" size = 1 << window_size table = [1] * size table[1] = base % mod for i in range(2, size): if i % 2 == 0: table[i] = (table[i // 2] ** 2) % mod # 平方复用 else: table[i] = (table[i - 1] * table[1]) % mod # 增量乘法 return table def windowed_mod_exp(base, exponent, mod, window_size=4): """动态窗口模幂运算""" start_time = time.perf_counter_ns() if mod == 1: return 0, time.perf_counter_ns() - start_time windows = dynamic_window(exponent, window_size) table = precompute_table(base, mod, window_size) result = 1 for win in windows: result = pow(result, (1 << window_size), mod) # 移位操作 result = (result * table[win]) % mod # 窗口组合 total_time = time.perf_counter_ns() - start_time return result, total_time, len(windows) + (window_size - 1) # 估算操作次数 def naive_mod_exp(base, exponent, mod): """朴素平方乘算法""" start_time = time.perf_counter_ns() result = 1 base = base % mod steps = 0 while exponent > 0: if exponent % 2 == 1: result = (result * base) % mod base = (base * base) % mod exponent //= 2 steps += 1 total_time = time.perf_counter_ns() - start_time return result, total_time, steps def generate_large_prime(bits): """生成大素数(带时间监控)""" start_time = time.perf_counter_ns() while True: p = random.getrandbits(bits) | (1 << (bits - 1)) | 1 # 确保最高位和最低位为1 if is_prime(p): total_time = time.perf_counter_ns() - start_time return p, total_time def is_prime(n, k=40): """Miller-Rabin素性测试(简化版)""" if n <= 1: return False if n <= 3: return True d = n - 1 s = 0 while d % 2 == 0: d //= 2 s += 1 for _ in range(k): a = random.randint(2, n - 2) x = pow(a, d, n) if x == 1 or x == n - 1: continue for __ in range(s - 1): x = pow(x, 2, n) if x == n - 1: break else: return False return True # 性能测试模块 def performance_test(bits=1024, window_size=4): print(f"\n===== {bits}位模幂运算性能测试 =====") p, _ = generate_large_prime(bits // 2) q, _ = generate_large_prime(bits // 2) n = p * q base = random.randint(2, n - 1) exp = random.getrandbits(bits) # 内置pow start = time.perf_counter_ns() expected = pow(base, exp, n) builtin_time = time.perf_counter_ns() - start print(f"1. 内置pow耗时: {builtin_time / 1000:.2f}μs") # 动态窗口算法 result_win, win_time, win_ops = windowed_mod_exp(base, exp, n, window_size) print(f"2. 动态窗口({window_size}位)耗时: {win_time / 1000:.2f}μs, 操作次数: {win_ops}") # 朴素算法 result_naive, naive_time, naive_ops = naive_mod_exp(base, exp, n) print(f"3. 朴素算法耗时: {naive_time / 1000:.2f}μs, 操作次数: {naive_ops}") # 验证总结 assert result_win == expected, "动态窗口结果错误" assert result_naive == expected, "朴素算法结果错误" speedup = naive_time / win_time if win_time != 0 else 0 print(f"\n性能对比:") print(f" - 动态窗口比朴素算法减少 {naive_ops - win_ops} 次模乘") print(f" - 加速比: {speedup:.2f}x") print(f" - 窗口大小{window_size}时的操作效率: {win_ops / (bits / window_size):.1f}次/窗口") # 执行测试 if __name__ == "__main__": # 小数据验证 print("===== 小数据验证 =====") res, time_us, ops = windowed_mod_exp(5, 17, 17 * 19, 4) print(f"5^17 mod 323 = {res}, 耗时{time_us / 1000:.2f}μs, 操作次数{ops}") # 大数据性能测试 performance_test(bits=1024, window_size=4) performance_test(bits=2048, window_size=5)
06-05
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值