深度学习的发展对个科学领域产生了深远的影响。它不仅在自然语言处理(NLP)和计算机视觉(CV)等人工智能领域显示出显著的价值,而且在电子商务、智慧城市和药物发现等更广泛的应用领域也取得了巨大的成功。随着卷积神经网络(CNN)、递归神经网络(RNN)、长-短期记忆(LSTM)和生成对抗网络(GAN)等多种深度学习模型的出现,简化各种DL模型的编程以实现其广泛采用至关重要。
在工业界和学术界的不断努力下,一些流行的DL框架被提出,如TensorFlow、PyTorch、MXNet和CNTK,以简化各种DL模型的实现。尽管上述DL框架根据其设计中的权衡有其优点和缺点,但是在跨现有DL模型支持新兴DL模型时,互操作性对于减少冗余工程工作变得非常重要。为了提供互操作性,ONNX被提出,它定义了表示DL模型的统一格式,以便于不同DL框架之间的模型转换。
为了解决DL库和工具的缺点,减轻手动优化每个DL硬件上的DL模型的负担,DL社区正在促进特定领域的编译器的发展。目前工业界和学术界已经提出了几种流行的DL编译器,如TVM、Tensor Comprehension、Glow、nGraph和XLA。DL编译器将DL框架中描述的模型定义作为输入,并在各种DL硬件上生成有效的代码实现作为输出。针对模型规范和硬件架构,对模型定义和具体代码实现之间的转换进行了高度