Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.
/*
我们需要一个一维数组dp,其中dp[i]表示目标数为i的解的个数,然后我们从1遍历到target,对于每一个数i,遍历nums数组如果i>=x,dp[i] += dp[i - x]。这个也很好理解,比如说对于[1,2,3] 4,这个例子,当我们在计算dp[3]的时候,3可以拆分为1+x,而x即为dp[2],3也可以拆分为2+x,此时x为dp[1],3同样可以拆为3+x,此时x为dp[0],我们把所有的情况加起来就是组成3的所有情况了
*/
public class Solution {
public int combinationSum4(int[] nums, int target) {
int[] dp = new int[target + 1];
dp[0] = 1;
for(int i = 1; i <= target; i++){
for(int j : nums){
if(j <= i){
dp[i] += dp[i - j];
}
}
}
return dp[target];
}
}