图的BFS算法和DFS算法

BFS(breadth first search)广度优先搜索,和二叉树广度优先搜索算法一样,一层一层的搜索,只不过得先找个起始点,如下图所示,比如起始点设为A,那就是A,B,C,D,E,F

DFS,也是先找个起始点,然后一条路走到底,走到不能走为止,再往回看上一个点的其他路径,直到探索完所有的点。如下图所示,不如起始点设为A,那就是,A,B,D,F,E,C,当然走法有多种。

BFS可以用queue(先进先出)来实现。

DFS可以用栈来实现(后进先出)来实现。

BFS:

graph = {
    "A":["B","C"],
    "B":["A","C","D"],
    "C":["A","B","D","E"],
    "D":["B","C","E",'F'],
    "E":["C","D",],
    "F":["D"]
}
def BFS(graph,start):
    if not isinstance(start,str):
        print('start is not a string')
        return
    queue = [start]
    seen = set()
    seen.add(start)
    while len(queue) >0:
        cur = queue.pop(0)
        print(cur)
        #cur的临接点
        nodes = graph[cur]
        for n in nodes:
            if n not in seen:
                queue.append(n)
                seen.add(n)
            

DFS:

#图的DFS算法
graph = {
    "A":["B","C"],
    "B":["A","C","D"],
    "C":["A","B","D","E"],
    "D":["B","C","E",'F'],
    "E":["C","D",],
    "F":["D"]
}
def DFS(graph,start):
    if not isinstance(start,str):
        print('start is not a string')
        return
    stack = [start]
    seen = set()
    seen.add(start)
    while len(stack) >0:
        cur = stack.pop()
        print(cur)
        #cur的临接点
        nodes = graph[cur]
        for n in nodes:
            if n not in seen:
                stack.append(n)
                seen.add(n)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值