梯度上升法,求最大似然函数,见http://sbp810050504.blog.51cto.com/2799422/1608064/
梯度下降,最小二乘法结果一样,h=W'X,W=W+alfa*X'*(y-h)或者W=W+alfa*(y-h)*Xi 随机梯度法
# coding=utf-8 #
import numpy as np
def loadDataSet():
dataMat = []; labelMat = []
fr = open(r'C:\Users\li\Downloads\machinelearninginaction\Ch05\testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #list:[[x0,x1,x2],...] list
labelMat.append(int(lineArr[2]))
return dataMat,labelMat
def sigmoid(inX):
return 1.0/(1+np.exp(-inX)) #overflow encountered in exp
def gradAscent(dataMatIn, classLabels):
dataMatrix = np.mat(dataMatIn) #convert to NumPy matrix mXn
labelMat = np.mat(classLabels).transpose() #convert to NumPy matrix mX1
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1)) #w matrix nX1
for k in range(maxCycles): #heavy on matrix operations
h = sigmoid(dataMatrix*weights) #matrix mult h mX1
error = (labelMat - h) #vector subtraction (y-h) mX1
weights = weights + alpha * dataMatrix.transpose()* error #matrix mult w=w+alfa*X'*(y-h)
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat,labelMat=loadDataSet()
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i])== 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
ax.scatter(xcord2, ycord2, s=30, c='green')
x = np.arange(-3.0, 4.0, 1)
y = (-weights[0]-weights[1]*x)/weights[2] # super line:w0*1+w1*x1+w2*x2=0
ax.plot(x, y.T) #x array 7 [],y array 1X7[[]]:?y.T array 7X1
plt.xlabel('X1'); plt.ylabel('X2');
plt.show()
def stocGradAscent0(dataMatrix, classLabels):
m,n = np.shape(dataMatrix)
alpha = 0.01
weights = np.ones(n) #initialize to all ones
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * np.array(dataMatrix[i]) #calculate only for new data,not for all data
return weights
def stocGradAscent1(dataMatrix, classLabels, numIter=150):
m,n = np.shape(dataMatrix)
weights = np.ones(n) #initialize to all ones
for j in range(numIter):
dataIndex = list(range(m))
for i in dataIndex:
alpha = 4/(1.0+j+i)+0.01 #apha decreases with iteration, does not go to 0 because of the constant
randIndex = int(np.random.uniform(0,len(dataIndex)))#随机选择样本进行W值计算
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha * error * np.array(dataMatrix[randIndex])
del(dataIndex[randIndex]) #删除随机选择并完成计算的样本
return weights
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5: return 1.0
else: return 0.0
def colicTest():
frTrain = open(r'C:\Users\li\Downloads\machinelearninginaction\Ch05\horseColicTraining.txt')
frTest = open(r'C:\Users\li\Downloads\machinelearninginaction\Ch05\horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(np.array(trainingSet), trainingLabels, 1000)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr =[]
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(np.array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print ("the error rate of this test is: %f" % errorRate)
return errorRate
def multiTest():
numTests = 10; errorSum=0.0
for k in range(numTests):
errorSum += colicTest()
print ("after %d iterations the average error rate is: %f" % (numTests, errorSum/float(numTests)))
dataMat,labelMat=loadDataSet()
print(dataMat,labelMat)
#weights=gradAscent(dataMat, labelMat)
#weights=stocGradAscent0(dataMat, labelMat)
weights=stocGradAscent1(dataMat, labelMat, 200)
print(weights)
plotBestFit(weights)
multiTest()