You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security system connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given a list of non-negative integers representing the amount of money of each house, determine the maximum amount of money you can rob tonight without alerting the police.
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size()==0) return 0;
if(nums.size()==1) return nums[0];
vector<int> ans={nums[0],max(nums[0],nums[1])};
for(int i=2;i<nums.size();i++){
ans.push_back(max(nums[i]+ans[i-2],ans[i-1]));
}
return ans.back();
}
};主要用到了动态规划。
专业窃贼的动态规划算法

本文介绍了一种使用动态规划解决的专业窃贼问题。该问题设定为一名窃贼计划抢劫一条街上的房屋,每栋房子都有一定数量的钱财,但相邻的房子有相连的安全系统。若两栋相邻房屋在同一晚被闯入,则会自动报警。文章提供了一个C++实现的算法,能够在不触动警报的情况下,计算出能抢夺的最大金额。

被折叠的 条评论
为什么被折叠?



