原题如下:
You are playing the following Nim Game with your friend: There is a heap of stones on the table, each time one of you take turns to remove 1 to 3 stones. The one who removes the last stone will be the winner. You will take the first turn to remove the stones.
Both of you are very clever and have optimal strategies for the game. Write a function to determine whether you can win the game given the number of stones in the heap.
For example, if there are 4 stones in the heap, then you will never win the game: no matter 1, 2, or 3 stones you remove, the last stone will always be removed by your friend.
可以从小到大对n分析:1<=n<=3: win
4=n: lose
5<=n<=7: win
8=n: lose
....
可以发现,对于先手者来说,如果 n%4值为0,肯定输,其他情况为赢。
所以代码为下:
class Solution {
public:
bool canWinNim(int n) {
return n%4 != 0;
}
};其实也可以用博弈论中的反向归纳法来分析,结果也是一样的。需要注意在这里我们有一个很强的假设就是理性的参与者和common knowledge,这是博弈论中很重要的概念。
本文探讨了Nim游戏中的胜负策略,通过分析得出当初始石堆数量n模4不等于0时,先手玩家必胜;反之则必败。文章还介绍了如何使用反向归纳法来理解这一结论。
401

被折叠的 条评论
为什么被折叠?



