参加学校某实验的机试,有个题目是20到40位的八进制大数运算。当时只写出了加减,回来之后按照当时的思路扩充了乘除。
定义大数结构
typedef struct num
{
char attribute;
int lenth;
int oct[N1];
}NUM;
1. 加法是按位运算,结果%8,大于7则保存进位,进位为(结果/8)。
NUM* plus(NUM *a,NUM *b)
{
NUM *carry;
NUM *result;
int i,j,k;
int len_a,len_b;
int mid;
result = init(result);
carry = init(carry);
len_a = a->lenth;
len_b = b->lenth;
i = N1-1;
j = N1-1;
k = N1-1;
while(i>=N1-len_a||j>=N1-len_b)
{
mid = a->oct[i] + b->oct[j] + carry->oct[k];
if(mid>7)result->oct[k] = mid % 8;
else result->oct[k] = mid;
carry->oct[k-1] = mid/8;
i--;
j--;
k--;
}
if(carry->oct[k]!=0)
{
result->oct[k] = carry->oct[k];
result->lenth = N1 - k;
}
else result->lenth = N1 - k - 1;
return result;
}
2. 减法与加法想法类似,小减大的情况,直接取负,没有按位处理。所以有一个判断大小的函数。
判断大小:
/*1 a>b 2 a<b 3 a==b*/
int judge(NUM* a,NUM* b)
{
int i;
if(a->lenth > b->lenth)return 1;
if(a->lenth < b->lenth)return 2;
else
{
i = N1 - a->lenth;
while(i<N1)
{
if(a->oct[i]>b->oct[i])return 1;
if(a->oct[i]==b->oct[i])i++;
else return 2;
}
return 3;
}
}
减法:
NUM* minus_decision(NUM *a,NUM *b)
{
int x;
NUM* result;
x = judge(a,b);
if(x == 1)
{
result = minus(b,a);
result->attribute = '-';
return result;
}
else return (minus(a,b));
}
NUM* minus(NUM *a,NUM *b)
{
NUM *carry;
NUM *result;
int i,j,k;
int len_a,len_b;
int mid;
result = init(result);
carry = init(carry);
len_a = a->lenth;
len_b = b->lenth;
i = N1-1;
j = N1-1;
k = N1-1;
while(i>=N1-len_a)
{
if((a->oct[i] - carry->oct[k])<b->oct[j])
{
mid = a->oct[i] + 8 - b->oct[j] - carry->oct[k];
carry->oct[k-1] = 1;
}
else mid = a->oct[i] - b->oct[j] - carry->oct[k];
result->oct[i] = mid;
i--;
j--;
k--;
}
i++;
result->lenth = N1 - i;
while(i<N1-1)
{
if(result->oct[i]==0)
{
result->lenth--;
i++;
}
else break;
}
return result;
}
3. 乘法。按位调用加法函数,然后移位累加。
NUM* times(NUM *a,NUM *b)
{
NUM* result1;
NUM* result2;
int i,j;
int len_b;
int repeat;
int move;
result1 = init(result1);
result2 = init(result2);
result1->lenth = a->lenth;
result2->lenth = b->lenth;
if(judge(a,result1) == 3 ||judge(b,result2) == 3)return result2;
len_b = b->lenth;
i = N1 -1;
while(i>= N1 - len_b)
{
move = N1-1-i;
repeat = b->oct[i];
result1 = a;
while(repeat>1)
{
result1 = plus(result1,a);
repeat--;
}
j = N1 - result1->lenth;
while(j<N1)
{
result1->oct[j-move] = result1->oct[j];
j++;
}
j -=move;
while(j<N1)
{
result1->oct[j] = 0;
j++;
}
result1->lenth += move;
result2 = plus(result1,result2);
i--;
}
return result2;
}
4. 除法。除法处理起来比较复杂。这里只处理整除。假设: 423/23,先算42/23,再循环求商,结果调用减法函数求余数,再重复上面步骤知道余数比23小。
NUM* divide(NUM *a,NUM *b)
{
NUM* result;
NUM* mid;
NUM* tmp;
int re[N1];
int len_re;
int len_a,len_b;
int i,j,k,x,p;
result = init(result);
mid = init(mid);
tmp = init(tmp);
x = 0;
if(judge(a,b)==1)
{
len_a = a->lenth;
len_b = b->lenth;
i = N1 - len_a;
j = N1 -1;
while(j>=N1-len_b)
{
mid->oct[j] = a->oct[i+len_b-1];
i--;
j--;
}
i = N1 - len_a + len_b -1;
mid->lenth = len_b;
while(i<N1)
{
if(judge(mid,b)!=2)
{
re[x] =1;
tmp->oct[N1-1] = re[x];
tmp->lenth = 1;
while(judge(times(b,tmp),mid) != 1)
{
re[x]++;
tmp->oct[N1-1] = re[x];
}
re[x]--;
tmp->oct[N1-1] = re[x];
mid = minus(mid,times(b,tmp));
if(mid->lenth == 1&&mid->oct[N1-1]==0)mid->lenth = 0;
}
else
{
re[x] = 0;
}
p = N1 - mid->lenth;
while(p<N1)
{
mid->oct[p-1] = mid->oct[p];
p++;
}
i++;
mid->oct[N1-1] = a->oct[i];
mid->lenth++;
k = mid->lenth;
while(k>=1)
{
if(mid->oct[N1-k]==0)
{mid->lenth--;k--;}
else break;
}
x++;
}
len_re = x;
}
if(judge(a,b)==2)
{
re[0] =0;
len_re =1;
}
if(judge(a,b)==3)
{
re[0] =1;
len_re =1;
}
for(i=N1-1,j=0;j<len_re;j++,i--)
{
result->oct[i] = re[j];
}
result->lenth = len_re;
return result;
}
只是初略写一下。代码写得很垃圾,仅供参考。没有八进制数检测,位数和结果溢出等等控制。
、