poj 2912 Rochambeau

本文介绍了一种通过Rochambeau(石头剪刀布)游戏来识别特定玩家(裁判)的算法。该算法能够处理多轮游戏记录,并在给定条件下找出裁判的身份及其最快确认轮次。
Rochambeau
Time Limit: 5000MS Memory Limit: 65536K
Total Submissions: 1507 Accepted: 514

Description

N children are playing Rochambeau (scissors-rock-cloth) game with you. One of them is the judge. The rest children are divided into three groups (it is possible that some group is empty). You don’t know who is the judge, or how the children are grouped. Then the children start playing Rochambeau game for M rounds. Each round two children are arbitrarily selected to play Rochambeau for one once, and you will be told the outcome while not knowing which gesture the children presented. It is known that the children in the same group would present the same gesture (hence, two children in the same group always get draw when playing) and different groups for different gestures. The judge would present gesture randomly each time, hence no one knows what gesture the judge would present. Can you guess who is the judge after after the game ends? If you can, after how many rounds can you find out the judge at the earliest?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (1 ≤ N ≤ 500, 0 ≤ M ≤ 2,000) in one line, which are the number of children and the number of rounds. Following are M lines, each line contains two integers in [0, N) separated by one symbol. The two integers are the IDs of the two children selected to play Rochambeau for this round. The symbol may be “=”, “>” or “<”, referring to a draw, that first child wins and that second child wins respectively.

Output

There is only one line for each test case. If the judge can be found, print the ID of the judge, and the least number of rounds after which the judge can be uniquely determined. If the judge can not be found, or the outcomes of the Mrounds of game are inconsistent, print the corresponding message.

Sample Input

3 3
0<1
1<2
2<0
3 5
0<1
0>1
1<2
1>2
0<2
4 4
0<1
0>1
2<3
2>3
1 0

Sample Output

Can not determine
Player 1 can be determined to be the judge after 4 lines
Impossible
Player 0 can be determined to be the judge after 0 lines


分析:和poj 1182(食物链)很相似,做法一样
    对于这题,要枚举每个人是judge的情况,如果对于某个人作为judge的情况下,所有round都合法(除包括judge的round),那么这个人就有可能是judge。如果这样的人不存在,输出"Impossible";如果有多个,输出"Can not determine";如果有唯一的,输出这个人编号。
    其次,唯一情况下如何确定判断出judge的最少round呢?我们知道,此时其他人都不可能judge,对于这些人,过程中可以知道判断出他不是judge的最少round,求出这些round中最大的即我们所求!
#include<cstdio>
const int N=500;
const int M=2000;
int p[N],r[N],n,a[M],b[M];
char op[M];
int max(int a,int b){return a>b?a:b;}
int findset(int x)
{
	if(x!=p[x])
	{
		int fx=findset(p[x]);
		r[x]=(r[x]+r[p[x]])%3;
		p[x]=fx;
	}
	return p[x];
}
int main()
{
	int m,i,j;
	while(~scanf("%d%d",&n,&m))
	{
		for(i=0;i<m;i++)
		{
			scanf("%d%c%d",&a[i],&op[i],&b[i]);
			if(op[i]=='=')op[i]=0;
			else if(op[i]=='>')op[i]=1;
			else op[i]=2;
		}
		int judge=-1,round=0;
		bool only=1;
		for(i=0;i<n;i++)
		{
			bool f=1;
			for(j=0;j<n;j++)p[j]=j,r[j]=0;
			for(j=0;j<m;j++)
			{
				if(a[j]==i||b[j]==i)continue;
				int fx=findset(a[j]),fy=findset(b[j]);
				if(fx==fy)
				{
					if(r[b[j]]!=(r[a[j]]+op[j])%3)
					{
						f=0;
						round=max(round,j+1);
						break;
					}
				}
				else
				{
					p[fy]=fx;
					r[fy]=(r[a[j]]-r[b[j]]+op[j]+3)%3;
				}
			}
			if(f)
			{
				if(judge==-1)judge=i;
				else {only=0;break;}
			}
		}
		if(judge==-1)puts("Impossible");
		else 
		{
			if(!only)puts("Can not determine");
			else printf("Player %d can be determined to be the judge after %d lines\n",judge,round);
		}
	}
	return 0;
}

内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值