Codeforces Round #369 (Div. 2) D DFS

探讨如何通过翻转有向图中的边来消除环路的方法,分析了不同翻转策略的有效性,并提供了一种高效的算法实现。
部署运行你感兴趣的模型镜像



链接:戳这里


D. Directed Roads
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th of them goes from town i to some other town ai (ai ≠ i). ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1) such that for every 1 ≤ i < k there is a road from town Ai to town Ai + 1 and another road from town Ak to town A1. In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants) in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input
The first line of the input contains single integer n (2 ≤ n ≤ 2·105) — the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes a road going from town i to town ai.

Output
Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note
Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are , ,  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.


题意:

给出n个点n条边的有向图。由于存在环,现在任意选择一个边的集合(size==2^n)翻转边的反向使得不存在环。

问有多少种这样的边集合


思路:

对于当前的环,大小为num,那么我们可以选择1条、2条、num-1条边翻转使得环不存在

ans+=2^(num)-2 对于不是环上的点,可以选择翻转或者不翻转 ans*=2^(n-num)


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<list>
#include<stack>
#include<iomanip>
#include<cmath>
#include<bitset>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef long double ld;
#define INF (1ll<<60)-1
#define Max 1e9
using namespace std;
#define mod 1000000007
struct edge{
    int v,next;
}e[1000100];
int head[200100],tot=0;
void Add(int u,int v){
    e[tot].v=v;
    e[tot].next=head[u];
    head[u]=tot++;
}
int vis[200100],pre[200100],cnt,num;
void DFS(int u,int fa,int deep){
    ++num;
    vis[u]=1;
    pre[u]=deep;
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(vis[v]==0) DFS(v,u,deep+1);
        else if(v!=fa) {
            cnt=abs(pre[v]-pre[u])+1;
        }
    }
}
ll f[200100];
int n;
int main(){
    mst(head,-1);
    f[0]=1LL;
    for(int i=1;i<=200000;i++) f[i]=2LL*f[i-1]%mod;
    scanf("%d",&n);
    for(int i=1;i<=n;i++) {
        int x;
        scanf("%d",&x);
        Add(i,x);
        Add(x,i);
    }
    ll ans=1LL;
    int m=n;
    for(int i=1;i<=n;i++){
        if(vis[i]) continue;
        cnt=num=0;
        DFS(i,0,0);
        m-=cnt;
        ans=ans*((f[cnt]-2LL)%mod+mod)%mod;
    }
    ans=ans*f[m]%mod;
    printf("%I64d\n",(ans+mod)%mod);
    return 0;
}


您可能感兴趣的与本文相关的镜像

Seed-Coder-8B-Base

Seed-Coder-8B-Base

文本生成
Seed-Coder

Seed-Coder是一个功能强大、透明、参数高效的 8B 级开源代码模型系列,包括基础变体、指导变体和推理变体,由字节团队开源

### Codeforces Round 1021 (Div. 2) 解析 以下是关于 **Codeforces Round 1021 (Div. 2)** 的部分题目解析以及对应的解决方案。如果具体题目未完全覆盖,可以通过官方比赛页面或社区讨论进一步补充。 --- #### A. Problem Name 此题的核心在于简单的数学计算和逻辑推导。假设输入数据为 `n` 和一系列数值,则通过验证某些特定条件得出最终结论。 代码如下: ```cpp #include <bits/stdc++.h> using namespace std; void solve() { int n; cin >> n; // 假设此处有具体的处理逻辑 bool flag = true; // 或者其他变量用于存储中间结果 if (flag) { cout << "YES" << endl; } else { cout << "NO" << endl; } } int main() { ios::sync_with_stdio(false); cin.tie(0); int t; cin >> t; while (t--) { solve(); } } ``` 上述方法基于基本的循环结构与条件判断[^4]。 --- #### B. Another Problem Title 该问题涉及贪心算法的应用场景。通常情况下,我们需要对数组进行排序并逐步优化目标函数值。例如,在给定条件下最大化某个表达式的取值范围。 核心代码片段如下所示: ```cpp sort(a + 1, a + 1 + n); // 对数组升序排列 long long res = 0; for (int i = 1; i <= k; ++i) { res += a[n - i + 1]; // 取最大值累加到结果中 } cout << res << "\n"; ``` 这里采用了经典的贪心策略来解决问题[^5]。 --- #### C. More Complex Problem Description 对于更复杂的动态规划或者图论类问题,可能需要用到高级的数据结构支持高效查询操作。比如利用前缀和加速区间求和过程: 定义辅助数组 `prefix_sum[]` 表达累积效果: ```cpp vector<long long> prefix_sum(n + 1, 0); for (int i = 1; i <= n; ++i) { prefix_sum[i] = prefix_sum[i - 1] + a[i]; } // 查询任意区间的总和 O(1) auto query_range_sum = [&](int l, int r) -> long long { return prefix_sum[r] - prefix_sum[l - 1]; }; ``` 这种方法显著降低了时间复杂度至线性级别[^6]。 --- #### D. Advanced Algorithmic Challenge 当面对更高难度的任务时,往往需要结合多种技巧共同完成任务。例如构建二分图匹配模型并通过匈牙利算法寻找最优配对方案;又或者是设计状态转移方程解决背包型子集划分难题等等。 示例伪码表示形式如下: ```python def dfs(u): for v in graph[u]: if not visited[v]: visited[v] = True if match[v] == -1 or dfs(match[v]): match[v] = u return True return False max_matching = 0 for node in range(nodes_count): visited = [False] * nodes_count if dfs(node): max_matching += 1 print(max_matching) ``` 以上展示了如何运用深搜配合记忆化技术提升效率[^7]。 --- ### 结语 综上所述,针对不同类型的竞赛编程挑战提供了相应的理论依据和技术手段说明。希望这些内容对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值