Codeforces Round #369 (Div. 2) C dp

解决树染色问题,通过动态规划寻找最小代价方案,确保染色后形成指定数量的连续同色组。



链接:戳这里


C. Coloring Trees
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
ZS the Coder and Chris the Baboon has arrived at Udayland! They walked in the park where n trees grow. They decided to be naughty and color the trees in the park. The trees are numbered with integers from 1 to n from left to right.

Initially, tree i has color ci. ZS the Coder and Chris the Baboon recognizes only m different colors, so 0 ≤ ci ≤ m, where ci = 0 means that tree i is uncolored.

ZS the Coder and Chris the Baboon decides to color only the uncolored trees, i.e. the trees with ci = 0. They can color each of them them in any of the m colors from 1 to m. Coloring the i-th tree with color j requires exactly pi, j litres of paint.

The two friends define the beauty of a coloring of the trees as the minimum number of contiguous groups (each group contains some subsegment of trees) you can split all the n trees into so that each group contains trees of the same color. For example, if the colors of the trees from left to right are 2, 1, 1, 1, 3, 2, 2, 3, 1, 3, the beauty of the coloring is 7, since we can partition the trees into 7 contiguous groups of the same color : {2}, {1, 1, 1}, {3}, {2, 2}, {3}, {1}, {3}.

ZS the Coder and Chris the Baboon wants to color all uncolored trees so that the beauty of the coloring is exactly k. They need your help to determine the minimum amount of paint (in litres) needed to finish the job.

Please note that the friends can't color the trees that are already colored.

Input
The first line contains three integers, n, m and k (1 ≤ k ≤ n ≤ 100, 1 ≤ m ≤ 100) — the number of trees, number of colors and beauty of the resulting coloring respectively.

The second line contains n integers c1, c2, ..., cn (0 ≤ ci ≤ m), the initial colors of the trees. ci equals to 0 if the tree number i is uncolored, otherwise the i-th tree has color ci.

Then n lines follow. Each of them contains m integers. The j-th number on the i-th of them line denotes pi, j (1 ≤ pi, j ≤ 109) — the amount of litres the friends need to color i-th tree with color j. pi, j's are specified even for the initially colored trees, but such trees still can't be colored.

Output
Print a single integer, the minimum amount of paint needed to color the trees. If there are no valid tree colorings of beauty k, print  - 1.

Examples
input
3 2 2
0 0 0
1 2
3 4
5 6
output
10
input
3 2 2
2 1 2
1 3
2 4
3 5
output
-1
input
3 2 2
2 0 0
1 3
2 4
3 5
output
5
input
3 2 3
2 1 2
1 3
2 4
3 5
output
0
Note
In the first sample case, coloring the trees with colors 2, 1, 1 minimizes the amount of paint used, which equals to 2 + 3 + 5 = 10. Note that 1, 1, 1 would not be valid because the beauty of such coloring equals to 1 ({1, 1, 1} is a way to group the trees into a single group of the same color).

In the second sample case, all the trees are colored, but the beauty of the coloring is 3, so there is no valid coloring, and the answer is  - 1.

In the last sample case, all the trees are colored and the beauty of the coloring matches k, so no paint is used and the answer is 0.


题意:

给出n棵树,每颗树颜色有些已知有些未知,现在要求将未知的树涂上颜色使得正好是连续的K块

每涂一棵树的颜色所花费的代价为aij (第i颗树第j种颜色

求出使得满足条件的情况下花费最小


思路:

dp[i][j][k] 当前第i颗树 涂第j总颜色 分成了k块所花费的最小代价


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<list>
#include<stack>
#include<iomanip>
#include<cmath>
#include<bitset>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef long double ld;
#define INF (1ll<<60)-1
#define Max 1e9
using namespace std;
int n,m,K;
int c[110];
int a[110][110];
ll dp[110][110][110]; /// 第i颗树 涂第j总颜色 分成了k块所花费的最小代价
int main(){
    scanf("%d%d%d",&n,&m,&K);
    for(int i=1;i<=n;i++) scanf("%d",&c[i]);
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++){
            scanf("%d",&a[i][j]);
        }
    }
    for(int i=0;i<=n;i++){
        for(int j=0;j<=m;j++){
            for(int k=0;k<=n;k++){
                dp[i][j][k]=INF;
            }
        }
    }
    dp[0][0][0]=0;
    for(int i=0;i<n;i++){
        for(int j=0;j<=m;j++){
            for(int k=0;k<=i;k++){
                if(dp[i][j][k]==INF) continue;
                if(c[i+1]){
                    if(c[i+1]==j) dp[i+1][j][k]=min(dp[i+1][j][k],dp[i][j][k]);
                    else dp[i+1][c[i+1]][k+1]=min(dp[i+1][c[i+1]][k+1],dp[i][j][k]);
                } else {
                    for(int l=1;l<=m;l++){
                        if(l==j) dp[i+1][l][k]=min(dp[i+1][l][k],dp[i][j][k]+a[i+1][l]);
                        else dp[i+1][l][k+1]=min(dp[i+1][l][k+1],dp[i][j][k]+a[i+1][l]);
                    }
                }
            }
        }
    }
    ll ans=INF;
    for(int i=1;i<=m;i++) ans=min(ans,dp[n][i][K]);
    if(ans==INF) printf("-1\n");
    else printf("%I64d\n",ans);
    return 0;
}


### Codeforces Round 1002 Div. 2 概述 Codeforces Round 1002 Div. 2 是一场面向较低评级选手的比赛,通常包含五道不同难度级别的编程挑战题。这类比赛旨在测试参赛者的算法思维能力和编码技巧。 对于该轮的具体题目及其解答方案,在当前提供的参考资料中并未直接提及此编号的比赛详情[^1]。然而,基于以往相似赛事的经验以及平台的一贯风格,下面给出一般性的描述和可能涉及的解法思路: #### A - Example Problem Title 假设A题是一个较为简单的入门级问题,它可能会考察基础的数据结构应用或是简单逻辑推理能力。解决方案往往依赖于清晰理解题目背景并运用基本循环控制语句实现目标功能。 ```cpp #include <iostream> using namespace std; void solve() { // 假设输入处理部分 int input; cin >> input; // 解决核心业务逻辑 if (input condition) { cout << "Expected Output"; } } ``` #### B - Another Simple Task B题则会稍微增加一点复杂度,比如引入数组操作或者是字符串匹配等内容。此时需要注意边界条件检查,并合理利用STL库函数简化代码编写过程。 ```cpp // 示例伪代码片段 vector<int> numbers; for (auto& num : numbers) { process(num); } if (!numbers.empty()) { do_something_with(numbers.back()); } ``` #### C - Intermediate Level Challenge 进入C级别之后,题目将会更加注重算法设计方面的要求,像贪心策略、动态规划等概念会被频繁使用到。这里的关键在于找到最优子结构性质来构建递推关系式求解最终答案。 ```cpp dp[0][0] = initial_value; for (size_t i = 1; i <= N; ++i) { dp[i][j] = min(dp[i-1][j], cost_of_transition + dp[i-1][prev_state]); } cout << result_based_on_dp_table; ``` #### D/E - Advanced Problems 最后两道高阶难题往往会涉及到图论模型建立、树形DP变换或者其他高级数据结构的应用场景分析。解决这些问题不仅考验个人技术功底更需要丰富的实战经验积累才能顺利攻克难关。 由于缺乏针对Codeforces Round 1002 Div. 2 的具体资料支持,上述内容仅作为参考模板展示如何按照惯例去构思各个层次的任务特点与应对方法[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值