Codeforces Round #279 (Div. 2) F DFS 树上最长上升子序列

本文介绍了一种解决特定问题的方法:在一个由城市组成的树结构中寻找乐队巡回演出的最多个城市的策略。通过DFS遍历并利用动态规划来确定乐队能进行演出的最长路径。



链接:戳这里


F. Treeland Tour
time limit per test5 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
The "Road Accident" band is planning an unprecedented tour around Treeland. The RA fans are looking forward to the event and making bets on how many concerts their favorite group will have.

Treeland consists of n cities, some pairs of cities are connected by bidirectional roads. Overall the country has n - 1 roads. We know that it is possible to get to any city from any other one. The cities are numbered by integers from 1 to n. For every city we know its value ri — the number of people in it.

We know that the band will travel along some path, having concerts in some cities along the path. The band's path will not pass one city twice, each time they move to the city that hasn't been previously visited. Thus, the musicians will travel along some path (without visiting any city twice) and in some (not necessarily all) cities along the way they will have concerts.

The band plans to gather all the big stadiums and concert halls during the tour, so every time they will perform in a city which population is larger than the population of the previously visited with concert city. In other words, the sequence of population in the cities where the concerts will be held is strictly increasing.

In a recent interview with the leader of the "road accident" band promised to the fans that the band will give concert in the largest possible number of cities! Thus the band will travel along some chain of cities of Treeland and have concerts in some of these cities, so that the population number will increase, and the number of concerts will be the largest possible.

The fans of Treeland are frantically trying to figure out how many concerts the group will have in Treeland. Looks like they can't manage without some help from a real programmer! Help the fans find the sought number of concerts.

Input
The first line of the input contains integer n (2 ≤ n ≤ 6000) — the number of cities in Treeland. The next line contains n integers r1, r2, ..., rn (1 ≤ ri ≤ 106), where ri is the population of the i-th city. The next n - 1 lines contain the descriptions of the roads, one road per line. Each road is defined by a pair of integers aj, bj (1 ≤ aj, bj ≤ n) — the pair of the numbers of the cities that are connected by the j-th road. All numbers in the lines are separated by spaces.

Output
Print the number of cities where the "Road Accident" band will have concerts.

Examples
input
6
1 2 3 4 5 1
1 2
2 3
3 4
3 5
3 6
output
4
input
5
1 2 3 4 5
1 2
1 3
2 4
3 5
output
3


题意:

n个城市,n-1条边,任意两个城市都有路径到达。现在一个乐队开演唱会,乐队沿着一条路途径城市。

乐队每开一次演唱会,当前城市的人口数量一定要比之前开演唱会的城市的人口数量多。

每个城市的人口数量为ai,问乐队最多能在多少个城市开演唱会


思路:

其实就是求树上的最长上升子序列。

枚举每个节点当作第一个开演唱会的城市,DFS下去,在链上更新最长上升子序列。

存下当前城市的人口数在栈中的下标。(栈中存的是到当前节点最优的上升子序列)

具体看代码。


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<iomanip>
#include<cmath>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define maxn 0x3f3f3f3f
#define MAX 1000100
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef unsigned long long ull;
#define INF (1ll<<60)-1
using namespace std;
int n;
struct edge{
    int v,next;
}e[120010];
int head[6060],tot=0;
int a[6060];
void Add(int u,int v){
    e[tot].v=v;
    e[tot].next=head[u];
    head[u]=tot++;
}
int ans=0;
int dp[6001];
int anw[6001],cnt=0;
void DFS(int u,int fa){
    for(int i=head[u];i!=-1;i=e[i].next){
        int v=e[i].v;
        if(v==fa) continue;
        int f=0,tmp=-1;
        if(a[v]>anw[cnt]){
            anw[++cnt]=a[v];
            dp[v]=cnt;
            f=-1;
        } else {
            int x=lower_bound(anw+1,anw+cnt+1,a[v])-anw;
            tmp=anw[x];
            anw[x]=a[v];
            dp[v]=x;
            f=x;
        }
        DFS(v,u);
        if(f==-1) cnt--;
        else if(f>0){
            anw[f]=tmp;
        }
    }
}
int main(){
    scanf("%d",&n);
    mst(head,-1);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]);
    for(int i=1;i<n;i++){
        int v,u;
        scanf("%d%d",&u,&v);
        Add(u,v);
        Add(v,u);
    }
    for(int i=1;i<=n;i++) {
        mst(dp,0);
        cnt=1;
        anw[1]=a[i];
        DFS(i,0);
        for(int j=1;j<=n;j++) ans=max(ans,dp[j]);
    }
    printf("%d\n",ans);
    return 0;
}


题目描述 给定一棵 $n$ 个节点的树,每个节点都有一个权值 $w_i$。你需要删去树上的一些边,使得剩下的每个连通块中,所有节点的权值之和不超过 $k$。 求最多能删去多少条边。 输入格式 第一行包含两个整数 $n,k$。 第二行包含 $n$ 个整数 $w_1,w_2,\cdots,w_n$。 接下来 $n-1$ 行,每行包含两个整数 $a,b$,表示节点 $a$ 和节点 $b$ 之间有一条边。 输出格式 输出一个整数,表示最多能删去的边数。 数据范围 $1\le n \le 10^5$ $1 \le k,w_i \le 10^9$ 输入样例1: 5 6 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例1: 2 输入样例2: 5 3 2 3 1 5 4 1 2 1 3 2 4 2 5 输出样例2: 0 算法1 (dfs) $O(n)$ 首先我们可以想到暴力的做法,即对于每个连通块,暴力枚举删去哪些边,尝试得到最多的删边数。那么如何求解一个连通块内的所有节点权值之和呢?我们可以使用 DFS 遍历树,对于每个节点,求出其子树内所有节点的权值之和,那么以该节点为根的子树内的所有节点权值之和就是该节点自身的权值加上其所有子节点的权值之和。 对于每个连通块,我们枚举该连通块内任意两个节点 $x,y$。如果 $x$ 与 $y$ 之间的路径上的所有边都被删去了,那么 $x$ 和 $y$ 就会分别成为两个新的连通块,这两个新的连通块内所有节点的权值之和都不超过 $k$。因此我们只需要枚举所有的 $x,y$ 对,对于每个 $x,y$ 对尝试删去它们之间的路径上的所有边,看是否能够让 $x$ 和 $y$ 成为两个新的连通块,进而更新答案即可。 时间复杂度 参考文献 python3 代码 算法2 (暴力枚举) $O(n^2)$ blablabla 时间复杂度 参考文献 C++ 代码 class Solution { public: const int N = 1e5+10; int n,k; int h[N],e[N<<1],ne[N<<1],idx; int w[N]; int sum[N]; bool st[N]; int res; void add(int a,int b) { e[idx] = b,ne[idx] = h[a],h[a] = idx++; } void dfs(int u,int father) { sum[u] = w[u]; for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs(j,u); sum[u] += sum[j]; } } void dfs2(int u,int father) { for(int i=h[u];~i;i=ne[i]) { int j = e[i]; if(j == father) continue; dfs2(j,u); if(sum[j] <= k) res++; else if(sum[u] - sum[j] <= k) res++; } } void solve() { cin >> n >> k; memset(h,-1,sizeof(h)); for(int i=1;i<=n;i++) cin >> w[i]; for(int i=1;i<n;i++) { int a,b; cin >> a >> b; add(a,b); add(b,a); } dfs(1,-1); dfs2(1,-1); cout << res << endl; } }; int main() { Solution().solve(); return 0; }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值