Codeforces Round #303 (Div. 2) C dp

本文探讨了一个关于伐木工砍树的问题,通过动态规划算法求解最多能砍多少棵树,确保砍倒的树不会互相压到。



链接:戳这里


C. Woodcutters
time limit per test1 second
memory limit per test256 megabytes
inputstandard input
outputstandard output
Little Susie listens to fairy tales before bed every day. Today's fairy tale was about wood cutters and the little girl immediately started imagining the choppers cutting wood. She imagined the situation that is described below.

There are n trees located along the road at points with coordinates x1, x2, ..., xn. Each tree has its height hi. Woodcutters can cut down a tree and fell it to the left or to the right. After that it occupies one of the segments [xi - hi, xi] or [xi;xi + hi]. The tree that is not cut down occupies a single point with coordinate xi. Woodcutters can fell a tree if the segment to be occupied by the fallen tree doesn't contain any occupied point. The woodcutters want to process as many trees as possible, so Susie wonders, what is the maximum number of trees to fell.

Input
The first line contains integer n (1 ≤ n ≤ 105) — the number of trees.

Next n lines contain pairs of integers xi, hi (1 ≤ xi, hi ≤ 109) — the coordinate and the height of the і-th tree.

The pairs are given in the order of ascending xi. No two trees are located at the point with the same coordinate.

Output
Print a single number — the maximum number of trees that you can cut down by the given rules.

Examples
input
5
1 2
2 1
5 10
10 9
19 1
output
3
input
5
1 2
2 1
5 10
10 9
20 1
output
4
Note
In the first sample you can fell the trees like that:

fell the 1-st tree to the left — now it occupies segment [ - 1;1]
fell the 2-nd tree to the right — now it occupies segment [2;3]
leave the 3-rd tree — it occupies point 5
leave the 4-th tree — it occupies point 10
fell the 5-th tree to the right — now it occupies segment [19;20]
In the second sample you can also fell 4-th tree to the right, after that it will occupy segment [10;19].


题意:

给出n颗树的高度hi以及在x轴上的坐标xi,伐木工去砍树,可以使得树向左倒或者向右倒,如果倒下去会压到左右两边的树的话,这棵树就不能砍。问最多能砍多少棵树。


思路:

设置dp状态:

dp[i][0] 表示当前第i棵树向左倒,能获得的最多的树的数目

dp[i][1] 表示当前第i棵树不倒,能获得的最多的树的数目

dp[i][2] 表示当前第i棵树向右倒,能获得的最多的树的数目

如果这棵树能向左倒且第i-1颗树向右倒或者不倒  dp[i][0]=max(dp[i-1][1],dp[i-1][0])+1; 

如果这棵树向左倒且第i-1棵树向右倒 dp[i][0]=max(dp[i-1][2]+1,dp[i][0]);

如果这棵树不倒,则直接继承上1棵树的所有状态

如果这棵树能向右倒 dp[i][2]=上一棵树的状态最大值+1


代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<vector>
#include <ctime>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<iomanip>
#include<cmath>
#define mst(ss,b) memset((ss),(b),sizeof(ss))
#define maxn 0x3f3f3f3f
#define MAX 1000100
///#pragma comment(linker, "/STACK:102400000,102400000")
typedef long long ll;
typedef unsigned long long ull;
#define INF (1ll<<60)-1
using namespace std;
ll dp[100100][3]; /// 0倒向左边 1不动 2倒向右边
ll x[100100],h[100100];
ll L[100100],R[100100];
int Max(int a,int b,int c){
    a=max(a,b);
    return max(a,c);
}
int n;
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%I64d%I64d",&x[i],&h[i]);
    dp[1][0]=1;
    if(x[1]+h[1]<x[2]) dp[1][2]=1;
    for(int i=2;i<=n;i++){
        ll tmp=Max(dp[i-1][0],dp[i-1][1],dp[i-1][2]);
        dp[i][0]=dp[i][1]=dp[i][2]=tmp;
        if(x[i]-h[i]>x[i-1]) dp[i][0]=Max(dp[i][0],dp[i-1][1]+1,dp[i-1][0]+1);
        if(x[i]-x[i-1]>h[i]+h[i-1]) dp[i][0]=Max(dp[i][0],dp[i-1][1]+1,dp[i-1][2]+1);
        if(i+1<=n && x[i]+h[i]<x[i+1]) dp[i][2]=tmp+1;
        if(i==n) dp[i][2]=tmp+1;
    }
    printf("%d\n",Max(dp[n][0],dp[n][1],dp[n][2]));
    return 0;
}


dp[i][0] 表示当前第i棵树向左倒,能获得的最多的树的数目
dp[i][0] 表示当前第i棵树向左倒,能获得的最多的树的数目
### Codeforces Round 1002 Div. 2 概述 Codeforces Round 1002 Div. 2 是一场面向较低评级选手的比赛,通常包含五道不同难度级别的编程挑战题。这类比赛旨在测试参赛者的算法思维能力和编码技巧。 对于该轮的具体题目及其解答方案,在当前提供的参考资料中并未直接提及此编号的比赛详情[^1]。然而,基于以往相似赛事的经验以及平台的一贯风格,下面给出一般性的描述和可能涉及的解法思路: #### A - Example Problem Title 假设A题是一个较为简单的入门级问题,它可能会考察基础的数据结构应用或是简单逻辑推理能力。解决方案往往依赖于清晰理解题目背景并运用基本循环控制语句实现目标功能。 ```cpp #include <iostream> using namespace std; void solve() { // 假设输入处理部分 int input; cin >> input; // 解决核心业务逻辑 if (input condition) { cout << "Expected Output"; } } ``` #### B - Another Simple Task B题则会稍微增加一点复杂度,比如引入数组操作或者是字符串匹配等内容。此时需要注意边界条件检查,并合理利用STL库函数简化代码编写过程。 ```cpp // 示例伪代码片段 vector<int> numbers; for (auto& num : numbers) { process(num); } if (!numbers.empty()) { do_something_with(numbers.back()); } ``` #### C - Intermediate Level Challenge 进入C级别之后,题目将会更加注重算法设计方面的要求,像贪心策略、动态规划等概念会被频繁使用到。这里的关键在于找到最优子结构性质来构建递推关系式求解最终答案。 ```cpp dp[0][0] = initial_value; for (size_t i = 1; i <= N; ++i) { dp[i][j] = min(dp[i-1][j], cost_of_transition + dp[i-1][prev_state]); } cout << result_based_on_dp_table; ``` #### D/E - Advanced Problems 最后两道高阶难题往往会涉及到图论模型建立、树形DP变换或者其他高级数据结构的应用场景分析。解决这些问题不仅考验个人技术功底更需要丰富的实战经验积累才能顺利攻克难关。 由于缺乏针对Codeforces Round 1002 Div. 2 的具体资料支持,上述内容仅作为参考模板展示如何按照惯例去构思各个层次的任务特点与应对方法[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值