用决策树方法对买电脑进行分类预测
from sklearn.feature_extraction import DictVectorizer
import csv
from sklearn import preprocessing
from sklearn import tree
# from sklearn.externals.six import StringIO
allElectronicsDate = open(r'E:\Python\practice\Decision_Tree\Class_buys_computer.csv','rt')
reader = csv.reader(allElectronicsDate)#CSV模块自带的reader方法,可按行读取内容
# print('reader:'+ str(reader))
headers = next(reader)
print(headers)
featureList = []
labelList = []
for row in reader:
print(row)
labelList.append(row[len(row)-1])
# print(labelList)
rowDict = {}
for i in range(1,len(row)-1):
# print(row[i])
rowDict[headers[i]]=row[i]
# print(