高级编程技术第十五次作业 Matplotlib

数学建模与数据分析实践
本文通过三个练习展示了如何使用Python进行数学建模与数据分析,包括绘制特定函数图像、从噪声数据中估计参数以及生成并分析概率分布。

Exercise 11.1: Plotting a function
Plot the function

f(x)=sin2(x2)ex2f(x)=sin2(x−2)e−x2

over the interval [0,2][0,2]. Add proper axis labels, a title, etc.
import numpy
import matplotlib.pyplot as plt  

x = numpy.linspace(0, 2, 100)  
y = numpy.square(numpy.sin(x - 2)) * numpy.exp(-x * x) 

plt.plot(x, y)
plt.title('f(x)')
plt.xlabel('x')
plt.ylabel('y')
plt.show()

Exercise 11.2: Data
Create a data matrix XX with 20 observations of 1010 variables. Generate a vector b⃗ b→ with parameters Then generate the response vector y⃗ =Xb⃗ +z⃗ y→=Xb→+z→ where z⃗ z→ is a vector with standard normally distributed variables.
Now (by only using y⃗ y→ and XX), find an estimator for b, by solving

b^=arg minb⃗ Xb⃗ y⃗ 2b^=arg minb→‖Xb→−y→‖2

Plot the true parameters b⃗ b→ and estimated parameters b^b^. See Figure 11 for an example plot.

import matplotlib.pyplot as plt  
import numpy
import random

X = numpy.random.randn(20, 10)
z = numpy.random.normal(size = (20, 1))
b1 = numpy.random.rand(10, 1)
y = numpy.dot(X, b1) + z
x = numpy.linspace(-1, 1, 10)  
b2 = numpy.array(numpy.linalg.lstsq(X, y, rcond = -1)[0])  
plt.scatter(x, b1, c = 'r', marker = 'x', label = "b")  
plt.scatter(x, b2, c = 'b', marker = 'o', label = 'b~')  
plt.xlabel('index')
plt.ylabel('value')
plt.legend()  
plt.show()  

Exercise 11.3: Histogram and density estimation
Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that shows a histogram of z⃗ z→ (with 25 bins), along with an estimate for the density, using a Gaussian kernel
density estimator (see scipy.stats). See Figure 2 for an example plot.

import numpy
import matplotlib.pyplot as plt
from scipy import stats

y = numpy.random.normal(size = 10000)
kernel = stats.gaussian_kde(y)
x = numpy.linspace(-10, 10, 1000)

plt.hist(y, 25, rwidth = 0.8, density = True)
plt.plot(x, kernel.evaluate(x))
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值