juypter notebook中直接使用log_device_placement=True打印不出来device信息
# Creates a graph.
with tf.device('/device:CPU:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True,allow_soft_placement=True))
# Runs the op.
print(sess.run(c))
需要使用output_partition_graphs来输出device信息
# Creates a graph.
with tf.device('/device:GPU:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True,allow_soft_placement=True))
# Runs the op.
options = tf.RunOptions(output_partition_graphs=True)
metadata = tf.RunMetadata()
c_val = sess.run(c, options=options, run_metadata=metadata)
print metadata.partition_graphs