输入的inputs:
data = pd.read_csv('../data/cuttingdata/' + name[i1] + '.csv', header=None)
inputs = np.array(data.iloc[i2, :])
1.原来:
(1)对于求绝对中位数mad:
data = inputs df = pd.DataFrame(data) mad = df.apply(robust.mad)
(2)对于求时域偏度skew、时域峰度kurtosis:
#skew
inputpd = pd.DataFrame(inputs) skew = inputpd.skew()
#kurtosis
kurtosis = inputpd.kurt()
输出:
2.修改后:
(1)对于求绝对中位数mad:
data = list(inputs) mad = robust.mad(data)
(2)对于求时域偏度skew、时域峰度kurtosis:
#skew
inputpd = list(inputs) skew = pd.Series(inputpd).skew()
#kurtosis
kurtosis = pd.Series(inputpd).kurt()
输出:
参考资料:
偏度与峰度(附python代码)_python偏度峰度_浅笑古今的博客-优快云博客
How to Calculate Median Absolute Deviation in Python (statology.org)
锵锵!!大功告成!希望能帮助到遇到同样问题的大家(*Φ皿Φ*)
如果有什么错误或者还有可以精进的地方还请在评论区指出,不胜感激呀~~~///(^v^)\\\~~~