四舍五入保留小数精度

import com.jb.tools.Calculate;

public class MathNum {
public MathNum() {
}

/**
* 取得小数点后两位,num为得到的字符串(即需要精确的数字)
* @param num String
* @return String
*/
public static String getNum(String num) {
String num_result = "0";
num_result = getNum(num, 2);
return num_result;
}

/**
* 根据取得的参数得到小数的精确值,num为得到的字符串(即需要精确的数字),precision为需要精确到小数点后的位数
* @param num String
* @param precision int
* @return String
*/
public static String getNum(String num, int precision) {
return Calculate.formatDoubleToRemainBit(new Double(num),precision);
}


public static void main(String[] args) {
System.out.println("MathNum.getNum(0.0256000,3)==="+MathNum.getNum("0.0256000",3));
}

}
### C++ 中实现四舍五入保留指定小数位的方法 在 C++ 中,可以通过多种方式实现对数值的四舍五入操作,并保留指定的小数位。以下是几种常见的方法及其具体实现。 #### 方法一:基于 `std::round` 和幂运算 这种方法利用了标准库中的 `std::round` 函数,该函数能够将一个浮点数按照常规的四舍五入规则取整。为了保留特定的小数位,可以先将目标值放大到相应的倍率后再缩小回原大小[^2]。 ```cpp #include <cmath> #include <iostream> double roundToPrecision(double value, int precision) { double factor = std::pow(10.0, precision); return std::round(value * factor) / factor; } int main() { double num = 45.693; int decimalPlaces = 2; double roundedValue = roundToPrecision(num, decimalPlaces); std::cout << "Rounded Value: " << roundedValue << std::endl; // 输出 45.69 } ``` 此方法的优点在于其逻辑清晰且易于理解,适用于大多数场景下的精确计算需求。 --- #### 方法二:使用自定义函数结合 `floor` 另一种常见的方式是借助于 `cmath` 库里的 `floor` 函数手动构建四舍五入机制。这种方式允许更灵活地调整行为,尤其适合那些希望避免依赖额外工具的情况[^1]。 ```cpp #include <cmath> #include <iostream> double customRound(double number, unsigned int bits) { double integerPart = std::floor(number); number -= integerPart; for (unsigned int i = 0; i < bits; ++i) number *= 10; number = std::floor(number + 0.5); for (unsigned int i = 0; i < bits; ++i) number /= 10; return integerPart + number; } int main() { double inputNumber = 78.9456; unsigned int digitsAfterDecimal = 3; double result = customRound(inputNumber, digitsAfterDecimal); std::cout << "Custom Rounded Result: " << result << std::endl; // 输出 78.946 } ``` 上述代码片段展示了如何通过逐步缩放数值来达到预期效果的同时保持较高的精度控制能力。 --- #### 方法三:运用 I/O 流格式化输出 如果仅仅是为了展示目的而非实际存储经过处理后的数据,则可以直接采用流操纵器如 `fixed` 及 `setprecision` 来定制打印样式[^3]。 ```cpp #include <iomanip> // For setprecision and fixed manipulators. #include <iostream> void displayWithFormatting(double val, size_t decimals) { std::cout << std::fixed << std::setprecision(decimals) << val << '\n'; } int main(){ const double piApproximation{3.14159}; constexpr auto fractionalDigitsToShow{2}; displayWithFormatting(piApproximation,fractionalDigitsToShow); // 屏幕上看到的是 3.14 } ``` 值得注意的是,这种技术仅改变呈现形式而不影响底层变量的真实状态。 --- #### 总结 以上三种途径各有千秋——第一种最为简洁高效;第二种给予开发者更大自由度去微调细节;第三种则专注于视觉表现层面的操作。根据项目具体情况和个人偏好挑选合适的技术方案即可满足不同层次的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值