Hive sql 中 over 总结

原文地址:https://blog.youkuaiyun.com/qq_28289405/article/details/81326767

一、开窗函数和聚合函数的含义

1、开窗函数的定义

     它和聚合函数是一样的 ,都是对行的集合组进行聚合计算。它用于为行定义一个窗口(这里的窗口是指运算将要操作的行的集合),它对一组值进行操作,不需要使用GROUP BY子句对数据进行分组,能够在同一行中同时返回基础行的列和聚合列。反正我理解这个函数已经使用好子查询或者是其它方式求得聚合列的值给我合并。

     但是与聚合函数不同的是,开窗函数在聚合函数后增加了一个OVER关键字。

2、开窗函数

①、格式  

             函数名(列) OVER(选项)

②、分类 

第一大类:聚合开窗函数====》聚合函数(列) OVER (选项),这里的选项可以是PARTITION BY子句,但不可是ORDER BY子句

第二大类:排序开窗函数====》排序函数(列) OVER(选项),这里的选项可以是ORDER BY子句,也可以是 OVER(PARTITION BY子句 ORDER BY子句),但不可以是PARTITION BY子句

二、开窗函数的具体介绍---聚合开窗函数和排序开窗函数

1、聚合开窗函数

        OVER 关键字表示把聚合函数当成聚合开窗函数而不是聚合函数。SQL 标准允许将所有聚合函数用做聚合开窗函数。在上边的例子中,开窗函数COUNT(*) OVER()对于查询结果的每一行都返回所有符合条件的行的条数。OVER关键字后的括号中还经常添加选项用以改变进行聚合运算的窗口范围。如果OVER关键字后的括号中的选项为空,则开窗函数会对结果集中的所有行进行聚合运算。

       开窗函数的OVER关键字后括号中的可以使用PARTITION BY 子句来定义行的分区来供进行聚合计算。与GROUP BY 子句不同,PARTITION BY 子句创建的分区是独立于结果集的,创建的分区只是供进行聚合计算的,而且不同的开窗函数所创建的分区也不互相影响。下面的SQL语句用于显示每一个人员的信息以及所属城市的人员数:

  1. SELECT FName, FCITY, FAGE, FSalary, //姓名、城市人员数、年龄、薪水

  2. COUNT(FName) OVER(PARTITION BY FCITY)

  3. FROM T_Person

OVER(PARTITION BY FCITY)表示对结果集按照FCITY进行分区,并且计算当前行所属的组的聚合计算结果。在同一个SELECT语句中可以同时使用多个开窗函数,而且这些开窗函数并不会相互干扰。比如下面的SQL语句用于显示每一个人员的信息、所属城市的人员数以及同龄人的人数:

  1. SELECT FName,FCITY, FAGE, FSalary,

  2. COUNT(FName) OVER(PARTITION BY FCITY),

  3. COUNT(FName) OVER(PARTITION BY FAGE)

  4. FROM T_Person

2、排序开窗函数

       对于排序开窗函数来讲,它支持的开窗函数分别为:ROW_NUMBER(行号)、RANK(排名)、DENSE_RANK(密集排名)和NTILE(分组排名)。

  1. select FName, FSalary, FCity, FAge,

  2. row_number() over(order by FSalary) as rownum,

  3. rank() over(order by FSalary) as rank,

  4. dense_rank() over(order by FSalary) as dense_rank,

  5. ntile(6) over(order by FSalary)as ntile

  6. from T_Person

  7. order by FName

       ①、对于row_number() over(order by FSalary) as rownum来说,这个排序开窗函数是按FSalary升序的方式来排序,并得出排序结果的序号

       ②、对于rank() over(order by FSalary) as rank来说,这个排序形容函数是按FSalary升序的方式来排序,并得出排序结果的排名号。这个函数求出来的排名结果可以排列,并列排名之后的排名将是并列的排名加上并列数(简单说每个人只有一种排名,然后出现两个并列第一名的情况,这时候排在两个第一名后面的人将是第三名,也就是没有了第二名,但是有两个第一名)

       ③、对于dense_rank() over(order by FSalary) as dense_rank来说,这个排序函数是按FSalary升序的方式来排序,并得出排序结果的排名号。这个函数与rand()函数不同在于,并列排名之后的排名只是并列排名加1(简单说每个人只有一种排名,然后出现两个并列第一名的情况,这时候排在两个第一名后面的人将是第二名,也就是两个第一名,一个第二名)

       ④、对于ntile(6) over(order by FSalary)as ntile 来说,这个排序函数是按FSalary升序的方式来排序,然后6等分成6个组吗,并显示所在组的序号。

排序函数和聚合开窗函数类似,也支持在OVER子句中使用PARTITION BY语句。例如:

  1. select FName, FSalary, FCity, FAge,

  2. row_number() over(partition by FName order by FSalary) as rownum,

  3. rank() over(partition by FName order by FSalary) as rank,

  4. dense_rank() over(partition by FName order by FSalary) as dense_rank,

  5. ntile(6) over(partition by FName order by FSalary)as ntile

  6. from T_Person

  7. order by FName

原文地址:https://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html

OVER(PARTITION BY)函数介绍

开窗函数          
     Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行。

      开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化,举例如下:
1:over后的写法:    
   over(order by salary) 按照salary排序进行累计,order by是个默认的开窗函数
   over(partition by deptno)按照部门分区

   over(partition by deptno order by salary)

2:开窗的窗口范围:
over(order by salary range between 5 preceding and 5 following):窗口范围为当前行数据幅度减5加5后的范围内的。

举例:

--sum(s)over(order by s range between 2 preceding and 2 following) 表示加2或2的范围内的求和

 select name,class,s, sum(s)over(order by s range between 2 preceding and 2 following) mm from t2
adf        3        45        45  --45加2减2即43到47,但是s在这个范围内只有45
asdf       3        55        55
cfe        2        74        74
3dd        3        78        158 --78在76到80范围内有78,80,求和得158
fda        1        80        158
gds        2        92        92
ffd        1        95        190
dss        1        95        190
ddd        3        99        198

gf         3        99        198

 over(order by salary rows between 5 preceding and 5 following):窗口范围为当前行前后各移动5行。

举例:

--sum(s)over(order by s rows between 2 preceding and 2 following)表示在上下两行之间的范围内
select name,class,s, sum(s)over(order by s rows between 2 preceding and 2 following) mm from t2
adf        3        45        174  (45+55+74=174)
asdf       3        55        252   (45+55+74+78=252)
cfe        2        74        332    (74+55+45+78+80=332)
3dd        3        78        379    (78+74+55+80+92=379)
fda        1        80        419
gds        2        92        440
ffd        1        95        461
dss        1        95        480
ddd        3        99        388
gf         3        99        293

over(order by salary range between unbounded preceding and unbounded following)或者

over(order by salary rows between unbounded preceding and unbounded following):窗口不做限制

3、与over函数结合的几个函数介绍

row_number()over()、rank()over()和dense_rank()over()函数的使用

下面以班级成绩表t2来说明其应用

t2表信息如下:
cfe        2        74
dss        1        95
ffd        1        95
fda        1        80
gds        2        92
gf         3        99
ddd        3        99
adf        3        45
asdf       3        55
3dd        3        78

select * from                                                                      
    (                                                                           
    select name,class,s,rank()over(partition by class order by s desc) mm from t2
    )                                                                           
    where mm=1;
得到的结果是:
dss        1        95        1
ffd        1        95        1
gds        2        92        1
gf         3        99        1
ddd        3        99        1 

注意:
    1.在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果;
select * from                                                                      
    (                                                                           
    select name,class,s,row_number()over(partition by class order by s desc) mm from t2
    )                                                                           
    where mm=1;
1        95        1  --95有两名但是只显示一个
2        92        1
3        99        1 --99有两名但也只显示一个

    2.rank()和dense_rank()可以将所有的都查找出来:
如上可以看到采用rank可以将并列第一名的都查找出来;
     rank()和dense_rank()区别:
     --rank()是跳跃排序,有两个第二名时接下来就是第四名;
select name,class,s,rank()over(partition by class order by s desc) mm from t2
dss        1        95        1
ffd        1        95        1
fda        1        80        3 --直接就跳到了第三
gds        2        92        1
cfe        2        74        2
gf         3        99        1
ddd        3        99        1
3dd        3        78        3
asdf       3        55        4
adf        3        45        5
     --dense_rank()l是连续排序,有两个第二名时仍然跟着第三名
select name,class,s,dense_rank()over(partition by class order by s desc) mm from t2
dss        1        95        1
ffd        1        95        1
fda        1        80        2 --连续排序(仍为2)
gds        2        92        1
cfe        2        74        2
gf         3        99        1
ddd        3        99        1
3dd        3        78        2
asdf       3        55        3
adf        3        45        4

--sum()over()的使用
select name,class,s, sum(s)over(partition by class order by s desc) mm from t2 --根据班级进行分数求和
dss        1        95        190  --由于两个95都是第一名,所以累加时是两个第一名的相加
ffd        1        95        190 
fda        1        80        270  --第一名加上第二名的
gds        2        92        92
cfe        2        74        166
gf         3        99        198
ddd        3        99        198
3dd        3        78        276
asdf       3        55        331
adf        3        45        376
 

first_value() over()和last_value() over()的使用  

--找出这三条电路每条电路的第一条记录类型和最后一条记录类型

SELECT opr_id,res_type,
       first_value(res_type) over(PARTITION BY opr_id ORDER BY res_type) low,
       last_value(res_type) over(PARTITION BY opr_id ORDER BY res_type rows BETWEEN unbounded preceding AND unbounded following) high
  FROM rm_circuit_route
WHERE opr_id IN ('000100190000000000021311','000100190000000000021355','000100190000000000021339')
 ORDER BY opr_id;

 

注:rows BETWEEN unbounded preceding AND unbounded following 的使用

--取last_value时不使用rows BETWEEN unbounded preceding AND unbounded following的结果

SELECT opr_id,res_type,
       first_value(res_type) over(PARTITION BY opr_id ORDER BY res_type) low,
       last_value(res_type) over(PARTITION BY opr_id ORDER BY res_type) high
  FROM rm_circuit_route
 WHERE opr_id IN ('000100190000000000021311','000100190000000000021355','000100190000000000021339')
 ORDER BY opr_id;

如下图可以看到,如果不使用

rows BETWEEN unbounded preceding AND unbounded following,取出的last_value由于与res_type进行进行排列,因此取出的电路的最后一行记录的类型就不是按照电路的范围提取了,而是以res_type为范围进行提取了。

  

 在first_value和last_value中ignore nulls的使用

数据如下:

取出该电路的第一条记录,加上ignore nulls后,如果第一条是判断的那个字段是空的,则默认取下一条,结果如下所示:

 

--lag() over()函数用法(取出前n行数据)
lag(expresstion,<offset>,<default>)
with a as 
(select 1 id,'a' name from dual
 union
 select 2 id,'b' name from dual
 union
 select 3 id,'c' name from dual
 union
 select 4 id,'d' name from dual
 union
 select 5 id,'e' name from dual

select id,name,lag(id,1,'')over(order by name) from a;

--lead() over()函数用法(取出后N行数据)

lead(expresstion,<offset>,<default>)
with a as 
(select 1 id,'a' name from dual
 union
 select 2 id,'b' name from dual
 union
 select 3 id,'c' name from dual
 union
 select 4 id,'d' name from dual
 union
 select 5 id,'e' name from dual

select id,name,lead(id,1,'')over(order by name) from a;

--ratio_to_report(a)函数用法 Ratio_to_report() 括号中就是分子,over() 括号中就是分母
with a as (select 1 a from dual
           union all
select 1 a from dual
           union  all
select 1 a from dual
           union all
select 2 a from dual
           union all 
select 3 a from dual
           union all
select 4 a from dual
           union all
select 4 a from dual
           union all
select 5 a from dual
           )
select a, ratio_to_report(a)over(partition by a) b from a 
order by a; 

with a as (select 1 a from dual
           union all
select 1 a from dual
           union  all
select 1 a from dual
           union all
select 2 a from dual
           union all 
select 3 a from dual
           union all
select 4 a from dual
           union all
select 4 a from dual
           union all
select 5 a from dual
           )
select a, ratio_to_report(a)over() b from a --分母缺省就是整个占比
order by a; 

with a as (select 1 a from dual
           union all
select 1 a from dual
           union  all
select 1 a from dual
           union all
select 2 a from dual
           union all 
select 3 a from dual
           union all
select 4 a from dual
           union all
select 4 a from dual
           union all
select 5 a from dual
           )
select a, ratio_to_report(a)over() b from a
group by a order by a;--分组后的占比

percent_rank用法

计算方法:所在组排名序号-1除以该组所有的行数-1,如下所示自己计算的pr1与通过percent_rank函数得到的值是一样的:
SELECT a.deptno,
       a.ename,
       a.sal,
       a.r,
       b.n,
       (a.r-1)/(n-1) pr1,
       percent_rank() over(PARTITION BY a.deptno ORDER BY a.sal) pr2
  FROM (SELECT deptno,
               ename,
               sal,
               rank() over(PARTITION BY deptno ORDER BY sal) r --计算出在组中的排名序号
          FROM emp
         ORDER BY deptno, sal) a,
       (SELECT deptno, COUNT(1) n FROM emp GROUP BY deptno) b --按部门计算每个部门的所有成员数
 WHERE a.deptno = b.deptno;


cume_dist函数

计算方法:所在组排名序号除以该组所有的行数,但是如果存在并列情况,则需加上并列的个数-1,
          如下所示自己计算的pr1与通过percent_rank函数得到的值是一样的:
SELECT a.deptno,
       a.ename,
       a.sal,
       a.r,
       b.n,
       c.rn,
       (a.r + c.rn - 1) / n pr1,
       cume_dist() over(PARTITION BY a.deptno ORDER BY a.sal) pr2
  FROM (SELECT deptno,
               ename,
               sal,
               rank() over(PARTITION BY deptno ORDER BY sal) r
          FROM emp
         ORDER BY deptno, sal) a,
       (SELECT deptno, COUNT(1) n FROM emp GROUP BY deptno) b,
       (SELECT deptno, r, COUNT(1) rn,sal
          FROM (SELECT deptno,sal,
                       rank() over(PARTITION BY deptno ORDER BY sal) r
                  FROM emp)
         GROUP BY deptno, r,sal
         ORDER BY deptno) c --c表就是为了得到每个部门员工工资的一样的个数
 WHERE a.deptno = b.deptno
   AND a.deptno = c.deptno(+)
   AND a.sal = c.sal;

percentile_cont函数

含义:输入一个百分比(该百分比就是按照percent_rank函数计算的值),返回该百分比位置的平均值
如下,输入百分比为0.7,因为0.7介于0.6和0.8之间,因此返回的结果就是0.6对应的sal的1500加上0.8对应的sal的1600平均
SELECT ename,
       sal,
       deptno,
       percentile_cont(0.7) within GROUP(ORDER BY sal) over(PARTITION BY deptno) "Percentile_Cont",
       percent_rank() over(PARTITION BY deptno ORDER BY sal) "Percent_Rank"
  FROM emp
 WHERE deptno IN (30, 60);

 

若输入的百分比为0.6,则直接0.6对应的sal值,即1500
SELECT ename,
       sal,
       deptno,
       percentile_cont(0.6) within GROUP(ORDER BY sal) over(PARTITION BY deptno) "Percentile_Cont",
       percent_rank() over(PARTITION BY deptno ORDER BY sal) "Percent_Rank"
  FROM emp
 WHERE deptno IN (30, 60);

PERCENTILE_DISC函数

功能描述:返回一个与输入的分布百分比值相对应的数据值,分布百分比的计算方法见函数CUME_DIST,如果没有正好对应的数据值,就取大于该分布值的下一个值。
注意:本函数与PERCENTILE_CONT的区别在找不到对应的分布值时返回的替代值的计算方法不同

SAMPLE:下例中0.7的分布值在部门30中没有对应的Cume_Dist值,所以就取下一个分布值0.83333333所对应的SALARY来替代

SELECT ename,
       sal,
       deptno,
       percentile_disc(0.7) within GROUP(ORDER BY sal) over(PARTITION BY deptno) "Percentile_Disc",
       cume_dist() over(PARTITION BY deptno ORDER BY sal) "Cume_Dist"
  FROM emp
 WHERE deptno IN (30, 60);

 

原文地址:https://blog.youkuaiyun.com/qq_43563538/article/details/90405306

看到这里自己很佩服SQL的强大,于是刨根问底,深入研究了一番Oracel的OVER(PARTITION BY)函数。

  • 简介

  开窗函数,Oracle从8.1.6开始提供分析函数,分析函数用于计算基于组的某种聚合值,它和聚合函数的不同之处是:对于每个组返回多行,而聚合函数对于每个组只返回一行。

  开窗函数指定了分析函数工作的数据窗口大小,这个数据窗口大小可能会随着行的变化而变化。

  下面的测试用例数据语句如下: 

 

 1 create table T2_TEMP(
 2     NAME varchar2(10) primary key,
 3     CLASS varchar2(10),
 4     SROCE NUMBER 
 5 )
 6 
 7 insert into T2_TEMP (NAME, CLASS, SROCE)
 8 values ('cfe', '2', 74);
 9 
10 insert into T2_TEMP (NAME, CLASS, SROCE)
11 values ('dss', '1', 95);
12 
13 insert into T2_TEMP (NAME, CLASS, SROCE)
14 values ('ffd', '1', 95);
15 
16 insert into T2_TEMP (NAME, CLASS, SROCE)
17 values ('fda', '1', 80);
18 
19 insert into T2_TEMP (NAME, CLASS, SROCE)
20 values ('gds', '2', 92);
21 
22 insert into T2_TEMP (NAME, CLASS, SROCE)
23 values ('gf', '3', 99);
24 
25 insert into T2_TEMP (NAME, CLASS, SROCE)
26 values ('ddd', '3', 99);
27 
28 insert into T2_TEMP (NAME, CLASS, SROCE)
29 values ('adf', '3', 45);
30 
31 insert into T2_TEMP (NAME, CLASS, SROCE)
32 values ('asdf', '3', 55);
33 
34 insert into T2_TEMP (NAME, CLASS, SROCE)
35 values ('3dd', '3', 78);

  1、over函数的写法:

  over(partition by class order by sroce) 按照sroce排序进行累计,order by是个默认的开窗函数,按照class分区。

  2、开窗的窗口范围:

  over(order by sroce range between 5 preceding and 5 following):窗口范围为当前行数据幅度减5加5后的范围内的。

  over(order by sroce rows between 5 preceding and 5 following):窗口范围为当前行前后各移动5行。

  3、与over()函数结合的函数的介绍

  (1)、查询每个班的第一名的成绩:如下 

1 SELECT * FROM (select t.name,t.class,t.sroce,rank() over(partition by t.class order by t.sroce desc) mm from T2_TEMP t) where mm = 1;

  结果为:

 

1 得到的结果是:
2 dss        1        95        1
3 ffd        1        95        1
4 gds        2        92        1
5 gf         3        99        1
6 ddd        3        99        1

 

  注意:在求第一名成绩的时候,不能用row_number(),因为如果同班有两个并列第一,row_number()只返回一个结果。

1 SELECT * FROM (select t.name,t.class,t.sroce,row_number() over(partition by t.class order by t.sroce desc) mm from T2_TEMP t) where mm = 1;

  结果为:

dss      1        95        1  
gfs      2        92        1
ddd      3        99        1 

  可以看出,本来第一名是两个人的并列,结果只显示了一个。

  (2)、rank()和dense_rank()可以将所有的都查找出来,rank可以将并列第一名的都查找出来;rank()和dense_rank()区别:rank()是跳跃排序,有两个第二名时接下来就是第四名。

  求班级成绩排名:

1 select t.name,t.class,t.sroce,rank() over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;

  查询结果:

 

dss        1        95        1
ffd        1        95        1
fda        1        80        3
gds        2        92        1
cfe        2        74        2
gf         3        99        1
ddd        3        99        1
3dd        3        78        3
asdf       3        55        4
adf        3        45        5

 

  dense_rank()l是连续排序,有两个第二名时仍然跟着第三名

1 select t.name,t.class,t.sroce,dense_rank() over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;

  查询结果:

 

dss        1        95        1
ffd        1        95        1
fda        1        80        2 
gds        2        92        1
cfe        2        74        2
gf         3        99        1
ddd        3        99        1
3dd        3        78        2
asdf       3        55        3
adf        3        45        4

 

  3、sum()over()的使用

  根据班级进行分数求和

1 select t.name,t.class,t.sroce,sum(t.sroce) over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;

 

dss        1        95        190  --由于两个95都是第一名,所以累加时是两个第一名的相加
ffd        1        95        190 
fda        1        80        270  --第一名加上第二名的
gds        2        92        92
cfe        2        74        166
gf         3        99        198
ddd        3        99        198
3dd        3        78        276
asdf       3        55        331
adf        3        45        376

 

  4、first_value() over()和last_value() over()的使用 

1 select t.name,t.class,t.sroce,first_value(t.sroce) over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;
2 select t.name,t.class,t.sroce,last_value(t.sroce) over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;

  分别求出第一个和最后一个成绩。

  5、sum() over()的使用

1 select t.name,t.class,t.sroce,sum(t.sroce) over(partition by t.class order by t.sroce desc) mm from T2_TEMP t;

  求出班级的总分。

  下面还有很多用法,就不一一列举了,简单介绍一下,和上面用法类似:

 

  count() over(partition by ... order by ...):求分组后的总数。
  max() over(partition by ... order by ...):求分组后的最大值。
  min() over(partition by ... order by ...):求分组后的最小值。
  avg() over(partition by ... order by ...):求分组后的平均值。
  lag() over(partition by ... order by ...):取出前n行数据。  

  lead() over(partition by ... order by ...):取出后n行数据。

  ratio_to_report() over(partition by ... order by ...):Ratio_to_report() 括号中就是分子,over() 括号中就是分母。

  percent_rank() over(partition by ... order by ...):

  6、over partition by与group by的区别:

  group by是对检索结果的保留行进行单纯分组,一般和聚合函数一起使用例如max、min、sum、avg、count等一块用。partition by虽然也具有分组功能,但同时也具有其他的高级功能。

 

1.1、两个order by的执行时机
分析函数是在整个sql查询结束后(sql语句中的order by的执行比较特殊)再进行的操作, 也就是说sql语句中的order by也会影响分析函数的执行结果:

a) 两者一致:如果sql语句中的order by满足分析函数分析时要求的排序,那么sql语句中的排序将先执行,分析函数在分析时就不必再排序;
b) 两者不一致:如果sql语句中的order by不满足分析函数分析时要求的排序,那么sql语句中的排序将最后在分析函数分析结束后执行排序。

           

1.2、分析函数中的分组/排序/窗口
      分析函数包含三个分析子句:分组(partition by), 排序(order by), 窗口(rows)
      窗口就是分析函数分析时要处理的数据范围,就拿sum来说,它是sum窗口中的记录而不是整个分组中的记录,因此我们在想得到某个栏位的累计值时,我们需要把窗口指定到该分组中的第一行数据到当前行, 如果你指定该窗口从该分组中的第一行到最后一行,那么该组中的每一个sum值都会一样,即整个组的总和。

      窗口子句在这里我只说rows方式的窗口,range方式和滑动窗口也不提。
      窗口子句中我们经常用到指定第一行,当前行,最后一行这样的三个属性。
第一行是 unbounded preceding,
当前行是 current row,
最后一行是 unbounded following,
窗口子句不能单独出现,必须有order by子句时才能出现,如:

last_value(sal) over(partition by deptno 
                     order by sal 
                     rows between unbounded preceding and unbounded following)

以上示例指定窗口为整个分组。而出现order by子句的时候,不一定要有窗口子句,但效果会很不一样,此时的窗口默认是当前组的第一行到当前行!

 

当省略窗口子句时:
a) 如果存在order by则默认的窗口是unbounded preceding and current row  --当前组的第一行到当前行
b) 如果同时省略order by则默认的窗口是unbounded preceding and unbounded following  --整个组

              
如果省略分组,则把全部记录当成一个组:
a) 如果存在order by则默认窗口是unbounded preceding and current row   --当前组的第一行到当前行
b) 如果这时省略order by则窗口默认为unbounded preceding and unbounded following  --整个组

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值