love will keep us alive & yellow

本文分享了一位吉他初学者经过半年练习后的成果,包括两首曲目:老鹰乐队的经典之作《Love Will Keep Us Alive》和平缓优美的Coldplay的《Yellow》。作者详细介绍了自己在练习过程中的感受及对这两首歌的理解。

苦练半年吉他的“成果”


一首老鹰乐队名垂青史绝对佳作 love will keep us alive ,由乐队吉他手原唱

平缓优美,指弹相对简单

歌曲链接


另一首是来自coldplay 的yellow,有人说我唱得鬼哭狼嚎的,连扫弦练得手都抽筋了,自认为假声唱得还比较“真”~~

歌曲链接


# -*- coding: utf-8 -*- """ Traffic Monitoring System v2.5 (Camera Version) Features: - Real-time camera object detection - YOLOv8 object detection - ByteTrack tracking - Matching colors for boxes and trajectories - Huawei Cloud IoT data reporting - Movable table - Trajectory display """ import os import sys import cv2 import numpy as np import torch import supervision as sv from ultralytics import YOLO from typing import Dict, Optional, Tuple, List import warnings import time import logging import socket import json from pathlib import Path from collections import defaultdict, deque # Import Huawei IoT SDK with encoding handling try: from iot_device_sdk_python.client.client_conf import ClientConf from iot_device_sdk_python.client.connect_auth_info import ConnectAuthInfo from iot_device_sdk_python.iot_device import IotDevice from iot_device_sdk_python.client.request.service_property import ServiceProperty except ImportError as e: logging.error(f"Huawei IoT SDK import error: {str(e)}") sys.exit(1) # Configure global logging with UTF-8 encoding logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', handlers=[ logging.StreamHandler(), logging.FileHandler('traffic_monitor.log', encoding='utf-8', mode='a') ] ) logger = logging.getLogger("TrafficMonitor") class Config: """System configuration parameters""" MODEL_PATH = r"C:\Users\yuanb\Desktop\物联网设计大赛无pyqt同时MQTT传输\runs\detect\train_v8\weights\best.pt" CLASS_NAMES = { 0: 'Pedestrian', 1: 'Person', 2: 'Bicycle', 3: 'Car', 4: 'Van', 5: 'Truck', 6: 'Tricycle', 7: 'CoveredTricycle', 8: 'Bus', 9: 'Motorcycle' } # Color palette for different classes CLASS_COLORS = { 0: (255, 0, 0), # Red - Pedestrian 1: (0, 255, 0), # Green - Person 2: (0, 0, 255), # Blue - Bicycle 3: (255, 255, 0), # Yellow - Car 4: (255, 0, 255), # Magenta - Van 5: (0, 255, 255), # Cyan - Truck 6: (255, 128, 0), # Orange - Tricycle 7: (128, 0, 255), # Purple - CoveredTricycle 8: (0, 128, 255), # Light Blue - Bus 9: (255, 0, 128) # Pink - Motorcycle } IOT_CONFIG = { "server_uri": "117.78.5.125", "port": 1883, "device_id": "681eeebc9314d118511a5690_DEV4", "secret": "Wjy15640916538", "service_id": "鲁班猫4", "use_tls": False, "keep_alive": 300, "clean_session": False } REPORT_INTERVAL = 10 MIN_REPORT_INTERVAL = 30 LINE_COLOR = sv.Color(r=0, g=255, b=0) TEXT_COLOR = (255, 255, 255) # White text for better visibility FONT_SCALE = 0.7 TABLE_POSITION = (10, 400) # Initial position, will be updated by mouse TABLE_ROW_HEIGHT = 30 TABLE_COL_WIDTH = 180 # Increased width TABLE_COLORS = { 'header': (0, 100, 255), 'row_even': (50, 50, 50), 'row_odd': (80, 80, 80), 'text': (255, 255, 255) } TRACK_HISTORY_LENGTH = 30 # Number of trajectory points to keep class LineCounter: """Improved counting logic with bidirectional counting and classification""" def __init__(self, start_point: sv.Point, end_point: sv.Point): self.start = start_point self.end = end_point self.tracker_state = {} self.counts = { 'Inbound_Vehicle': 0, 'Outbound_Vehicle': 0, 'Inbound_Pedestrian': 0, 'Outbound_Pedestrian': 0, 'Total_Vehicles': 0, 'Total_Pedestrians': 0 } self.class_mapping = { 'Vehicle': {3, 4, 5, 6, 7, 8, 9}, 'Pedestrian': {0, 1} } self.history = [] def _get_side(self, point: sv.Point) -> bool: """Calculate which side of the line the point is on (cross product method)""" vector_line = (self.end.x - self.start.x, self.end.y - self.start.y) vector_point = (point.x - self.start.x, point.y - self.start.y) cross_product = vector_line[0] * vector_point[1] - vector_line[1] * vector_point[0] return cross_product > 0 def update(self, detections: sv.Detections): """Update counter state""" current_counts = { 'Inbound_Vehicle': 0, 'Outbound_Vehicle': 0, 'Inbound_Pedestrian': 0, 'Outbound_Pedestrian': 0, } for xyxy, _, confidence, class_id, tracker_id in detections: if tracker_id is None or confidence < 0.5: continue # Calculate center point x1, y1, x2, y2 = xyxy center = sv.Point(x=int((x1 + x2) / 2), y=int((y1 + y2) / 2)) current_side = self._get_side(center) # Initialize new object if tracker_id not in self.tracker_state: self.tracker_state[tracker_id] = current_side continue # Check if crossed the line if self.tracker_state[tracker_id] != current_side: if class_id in self.class_mapping['Vehicle']: direction = 'Inbound' if current_side else 'Outbound' current_counts[f'{direction}_Vehicle'] += 1 self.counts[f'{direction}_Vehicle'] += 1 self.counts['Total_Vehicles'] += 1 elif class_id in self.class_mapping['Pedestrian']: direction = 'Inbound' if current_side else 'Outbound' current_counts[f'{direction}_Pedestrian'] += 1 self.counts[f'{direction}_Pedestrian'] += 1 self.counts['Total_Pedestrians'] += 1 self.tracker_state[tracker_id] = current_side if any(current_counts.values()): self.history.append({ 'timestamp': time.time(), 'counts': current_counts.copy() }) def get_counts(self) -> Dict[str, int]: """Get current statistics""" return self.counts.copy() def get_recent_counts(self, seconds=10) -> Dict[str, int]: """Get counts from recent specified time period""" recent_counts = { 'Inbound_Vehicle': 0, 'Outbound_Vehicle': 0, 'Inbound_Pedestrian': 0, 'Outbound_Pedestrian': 0 } cutoff = time.time() - seconds for record in reversed(self.history): if record['timestamp'] < cutoff: break for key in recent_counts: recent_counts[key] += record['counts'].get(key, 0) return recent_counts class HuaweiIoTClient: """Huawei Cloud IoT Client""" def __init__(self, config: dict): self.config = config self.device = None self.max_retries = 5 self.base_reconnect_delay = 5 self.last_report_time = 0 self._initialize_client() def _initialize_client(self): """Initialize client connection""" try: auth_info = ConnectAuthInfo() auth_info.server_uri = self.config["server_uri"] auth_info.port = self.config["port"] auth_info.id = self.config["device_id"] auth_info.secret = self.config["secret"] self.config["use_tls"] = False client_conf = ClientConf(auth_info) client_conf.clean_session = self.config["clean_session"] client_conf.keep_alive = self.config["keep_alive"] client_conf.will_topic = f"$oc/devices/{self.config['device_id']}/sys/events/down" client_conf.will_message = json.dumps({ "type": "ABNORMAL_DISCONNECT", "timestamp": time.strftime("%Y%m%dT%H%M%SZ", time.gmtime()) }) self.device = IotDevice(client_conf) self._connect_with_retry() except Exception as e: logger.error(f"Client initialization failed: {str(e)}") raise def _check_network(self) -> bool: """Check network connectivity""" try: with socket.create_connection( (self.config["server_uri"], self.config["port"]), timeout=10 ): return True except Exception as e: logger.warning(f"Network check failed: {str(e)}") return False def _connect_with_retry(self): """Exponential backoff reconnection mechanism""" retry_count = 0 while retry_count < self.max_retries: try: if not self._check_network(): raise ConnectionError("Network unavailable") result = self.device.connect() if result == 0: logger.info(f"Connection successful (attempt {retry_count + 1}/{self.max_retries})") return True wait_time = min(self.base_reconnect_delay * (2 ** retry_count), 60) logger.warning(f"Connection failed, retrying in {wait_time} seconds... (error code: {result})") time.sleep(wait_time) retry_count += 1 except Exception as e: wait_time = min(self.base_reconnect_delay * (2 ** retry_count), 60) logger.error(f"Connection exception: {str(e)}, retrying in {wait_time} seconds") time.sleep(wait_time) retry_count += 1 logger.error("Max retries reached, giving up") return False def is_connected(self) -> bool: """Check connection status""" try: return (self.device is not None and hasattr(self.device, 'get_client') and self.device.get_client().is_connected()) except Exception as e: logger.warning(f"Connection status check exception: {str(e)}") return False def report_traffic_data(self, counts: Dict[str, int]) -> bool: """Data reporting method""" current_time = time.time() if current_time - self.last_report_time < Config.MIN_REPORT_INTERVAL: return False if not self.is_connected(): logger.warning("Connection lost, attempting to reconnect...") if not self._connect_with_retry(): return False try: service = ServiceProperty() service.service_id = self.config["service_id"] service.properties = { "vehicle_in": counts.get('Inbound_Vehicle', 0), "vehicle_out": counts.get('Outbound_Vehicle', 0), "vehicle_total": counts.get('Total_Vehicles', 0), "person_in": counts.get('Inbound_Pedestrian', 0), "person_out": counts.get('Outbound_Pedestrian', 0), "person_total": counts.get('Total_Pedestrians', 0), "timestamp": int(time.time() * 1000) } service.event_time = time.strftime("%Y%m%dT%H%M%SZ", time.gmtime()) result = self.device.get_client().report_properties([service]) if result == 0: self.last_report_time = current_time logger.info(f"Data reported successfully: {service.properties}") return True logger.error(f"Reporting failed, return code: {result}") return False except Exception as e: logger.error(f"Reporting exception: {str(e)}") return False class TrafficMonitor: """Main traffic monitoring program""" def __init__(self): # Hardware configuration self.device = 'cuda' if torch.cuda.is_available() else 'cpu' logger.info(f"Running on: {self.device.upper()}") # Model loading self.model = self._load_model() self.tracker = sv.ByteTrack() self.line_counter = None self.frame_count = 0 self.current_tracks = {} self.track_history = defaultdict(lambda: deque(maxlen=Config.TRACK_HISTORY_LENGTH)) # Visualization tools with custom color settings self.box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.TRACK) self.label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.TRACK) self.line_annotator = sv.LineZoneAnnotator( thickness=2, text_thickness=1, text_scale=0.5 ) # Table properties self.table_position = list(Config.TABLE_POSITION) self.is_dragging = False self.drag_offset = (0, 0) # Huawei Cloud connection try: self.iot_client = HuaweiIoTClient(Config.IOT_CONFIG) except Exception as e: logger.error(f"Huawei IoT client initialization failed: {str(e)}") self.iot_client = None def _load_model(self) -> YOLO: """Load YOLO model""" try: model = YOLO(Config.MODEL_PATH) model.fuse() logger.info(f"Model loaded successfully, detection classes: {model.names}") return model except Exception as e: logger.error(f"Model loading failed: {str(e)}") sys.exit(1) def set_counting_line(self, start: Tuple[int, int], end: Tuple[int, int]): """Set counting line coordinates""" self.line_counter = LineCounter( start_point=sv.Point(*start), end_point=sv.Point(*end) ) logger.info(f"Counting line set: {start} -> {end}") def _draw_stats(self, frame: np.ndarray, counts: Dict[str, int]) -> np.ndarray: """Draw statistics on frame""" stats = [ f"Inbound Vehicle: {counts['Inbound_Vehicle']}", f"Outbound Vehicle: {counts['Outbound_Vehicle']}", f"Total Vehicles: {counts['Total_Vehicles']}", f"Inbound Pedestrian: {counts['Inbound_Pedestrian']}", f"Outbound Pedestrian: {counts['Outbound_Pedestrian']}", f"Total Pedestrians: {counts['Total_Pedestrians']}" ] for i, text in enumerate(stats): cv2.putText( frame, text, (10, 30 + i * 30), cv2.FONT_HERSHEY_SIMPLEX, Config.FONT_SCALE, Config.TEXT_COLOR, 2 ) return frame def _draw_data_table(self, frame: np.ndarray, counts: Dict[str, int], recent_counts: Dict[str, int]) -> np.ndarray: """Draw movable data table""" x, y = self.table_position row_height = Config.TABLE_ROW_HEIGHT col_width = Config.TABLE_COL_WIDTH # Calculate table dimensions num_cols = 3 num_rows = 5 # Header + 4 data rows table_width = num_cols * col_width table_height = num_rows * row_height # Draw table background cv2.rectangle(frame, (x, y), (x + table_width, y + table_height), (40, 40, 40), -1) # Table header headers = ["Metric", "Total", "Last 10s"] for i, header in enumerate(headers): cv2.rectangle(frame, (x + i * col_width, y), (x + (i + 1) * col_width, y + row_height), Config.TABLE_COLORS['header'], -1) cv2.putText(frame, header, (x + i * col_width + 10, y + int(row_height * 0.7)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, Config.TABLE_COLORS['text'], 1) # Data rows rows = [ ("Inbound Vehicle", counts['Inbound_Vehicle'], recent_counts['Inbound_Vehicle']), ("Outbound Vehicle", counts['Outbound_Vehicle'], recent_counts['Outbound_Vehicle']), ("Inbound Pedestrian", counts['Inbound_Pedestrian'], recent_counts['Inbound_Pedestrian']), ("Outbound Pedestrian", counts['Outbound_Pedestrian'], recent_counts['Outbound_Pedestrian']) ] for row_idx, (label, total, recent) in enumerate(rows): bg_color = Config.TABLE_COLORS['row_even'] if row_idx % 2 == 0 else Config.TABLE_COLORS['row_odd'] # Draw row background cv2.rectangle(frame, (x, y + (row_idx + 1) * row_height), (x + table_width, y + (row_idx + 2) * row_height), bg_color, -1) # Draw cell content cv2.putText(frame, label, (x + 10, y + (row_idx + 1) * row_height + int(row_height * 0.7)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, Config.TABLE_COLORS['text'], 1) cv2.putText(frame, str(total), (x + col_width + 10, y + (row_idx + 1) * row_height + int(row_height * 0.7)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, Config.TABLE_COLORS['text'], 1) cv2.putText(frame, str(recent), (x + 2 * col_width + 10, y + (row_idx + 1) * row_height + int(row_height * 0.7)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, Config.TABLE_COLORS['text'], 1) # Draw drag handle (small rectangle at top-right) handle_size = 20 cv2.rectangle(frame, (x + table_width - handle_size, y), (x + table_width, y + handle_size), (0, 255, 255), -1) return frame def _handle_table_drag(self, event, x, y, flags, param): """Mouse callback for table dragging""" table_x, table_y = self.table_position table_width = 3 * Config.TABLE_COL_WIDTH table_height = 5 * Config.TABLE_ROW_HEIGHT handle_size = 20 # Check if mouse is in drag handle area handle_rect = (table_x + table_width - handle_size, table_y, table_x + table_width, table_y + handle_size) if event == cv2.EVENT_LBUTTONDOWN: if (handle_rect[0] <= x <= handle_rect[2] and handle_rect[1] <= y <= handle_rect[3]): self.is_dragging = True self.drag_offset = (x - table_x, y - table_y) elif event == cv2.EVENT_LBUTTONUP: self.is_dragging = False elif event == cv2.EVENT_MOUSEMOVE: if self.is_dragging: # Update table position with offset new_x = x - self.drag_offset[0] new_y = y - self.drag_offset[1] # Keep table within frame bounds frame_height, frame_width = param.shape[:2] new_x = max(0, min(new_x, frame_width - table_width)) new_y = max(0, min(new_y, frame_height - table_height)) self.table_position = [new_x, new_y] def _draw_tracks(self, frame: np.ndarray, detections: sv.Detections) -> np.ndarray: """Draw object trajectories with matching colors""" for xyxy, _, confidence, class_id, tracker_id in detections: if tracker_id is None or confidence < 0.5: continue # Get color based on class color = Config.CLASS_COLORS.get(class_id, (255, 255, 255)) # Default to white if class not found # Calculate center point x1, y1, x2, y2 = xyxy center = (int((x1 + x2) / 2), int((y1 + y2) / 2)) # Update track history self.track_history[tracker_id].append(center) # Draw trajectory line points = list(self.track_history[tracker_id]) for i in range(1, len(points)): cv2.line(frame, points[i - 1], points[i], color, thickness=2) # Draw bounding box with same color cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), color, 2) # Display ID and class label = f"{Config.CLASS_NAMES.get(class_id, 'Unknown')} ID:{tracker_id}" cv2.putText(frame, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) return frame def _update_track_info(self, detections: sv.Detections): """Update tracking object information""" current_tracks = {} for xyxy, _, confidence, class_id, tracker_id in detections: if tracker_id is not None: current_tracks[tracker_id] = (class_id, confidence) self.current_tracks = current_tracks def process_frame(self, frame: np.ndarray) -> np.ndarray: """Process single frame""" try: # Object detection results = self.model(frame, imgsz=640, verbose=False)[0] detections = sv.Detections.from_ultralytics(results) # Object tracking with ByteTrack detections = self.tracker.update_with_detections(detections) self._update_track_info(detections) # Initialize count results counts = { 'Inbound_Vehicle': 0, 'Outbound_Vehicle': 0, 'Inbound_Pedestrian': 0, 'Outbound_Pedestrian': 0, 'Total_Vehicles': 0, 'Total_Pedestrians': 0 } recent_counts = { 'Inbound_Vehicle': 0, 'Outbound_Vehicle': 0, 'Inbound_Pedestrian': 0, 'Outbound_Pedestrian': 0 } if self.line_counter: # Update counter self.line_counter.update(detections) counts = self.line_counter.get_counts() recent_counts = self.line_counter.get_recent_counts(seconds=10) # Draw counting line cv2.line( frame, (self.line_counter.start.x, self.line_counter.start.y), (self.line_counter.end.x, self.line_counter.end.y), Config.LINE_COLOR.as_bgr(), 2 ) # Periodic data reporting if self.frame_count % Config.REPORT_INTERVAL == 0 and self.iot_client: self.iot_client.report_traffic_data(counts) # Draw object trajectories and boxes (now handled together in _draw_tracks) frame = self._draw_tracks(frame, detections) # Display statistics and table frame = self._draw_stats(frame, counts) frame = self._draw_data_table(frame, counts, recent_counts) # Set mouse callback for table dragging cv2.setMouseCallback("Traffic Monitoring", self._handle_table_drag, frame) self.frame_count += 1 return frame except Exception as e: logger.error(f"Frame processing exception: {str(e)}") return frame def interactive_line_setup(frame: np.ndarray) -> Optional[Tuple[Tuple[int, int], Tuple[int, int]]]: """Interactive counting line setup""" points = [] instructions = [ "1. Click to set line start point", "2. Click to set line end point", "3. Press ESC to confirm" ] def mouse_callback(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: points.append((x, y)) cv2.circle(frame, (x, y), 5, (0, 0, 255), -1) if len(points) > 1: cv2.line(frame, points[0], points[1], (0, 255, 0), 2) cv2.namedWindow("Set Counting Line") cv2.setMouseCallback("Set Counting Line", mouse_callback) for i, text in enumerate(instructions): cv2.putText(frame, text, (10, 30 + i * 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2) while True: cv2.imshow("Set Counting Line", frame) key = cv2.waitKey(1) if key == 27 or len(points) >= 2: # ESC key or two points selected break cv2.destroyAllWindows() return (points[0], points[1]) if len(points) >= 2 else None def main(): """Main program entry""" try: # Open default camera (index 0) cap = cv2.VideoCapture(0) if not cap.isOpened(): logger.error("Unable to open camera") return # Set camera resolution (optional, adjust as needed) cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720) # Initialize monitor monitor = TrafficMonitor() # Read a few frames to allow camera to adjust for _ in range(5): ret, frame = cap.read() if not ret: logger.error("Failed to capture initial frames from camera") return # Set counting line using a frame from the camera line_points = interactive_line_setup(frame.copy()) if line_points: monitor.set_counting_line(*line_points) else: logger.info("No counting line set, will only perform object detection") # Main loop while cap.isOpened(): ret, frame = cap.read() if not ret: logger.warning("Camera frame read failed") break # Process frame processed_frame = monitor.process_frame(frame) # Display results cv2.imshow("Traffic Monitoring", processed_frame) key = cv2.waitKey(1) if key == ord('q') or key == 27: # 'q' or ESC to quit logger.info("Program terminated by user") break elif key == ord('r'): # 'r' to reset counting line line_points = interactive_line_setup(frame.copy()) if line_points: monitor.set_counting_line(*line_points) except KeyboardInterrupt: logger.info("Program interrupted by user") except Exception as e: logger.critical(f"Program exception: {str(e)}", exc_info=True) finally: # Release resources if 'cap' in locals() and cap.isOpened(): cap.release() cv2.destroyAllWindows() logger.info("Program exited") if __name__ == "__main__": # Check required dependencies try: import iot_device_sdk_python except ImportError: logger.error("Huawei IoT SDK not found, please install: pip install iot_device_sdk_python") sys.exit(1) # Ignore warning messages warnings.filterwarnings("ignore", category=UserWarning) main()为我修改这个代码改为画两条线,第一个点和第二个点是第一条线,第三个点和第四个点是第二条线,同时计算第一个点的正向行走人数-第二个点正向行走的绝对值,第二个点-第一个点正向行走的绝对值,第一条线正、逆向行走人数,总人数。第二条线正、逆向行走人数,总人数,尽量减少源代码的修改,MQTT协议传送部分不要过大改动
08-16
Loading pipeline components...: 100%|██████████████████████████████████████████████████████████████████████████████████| 6/6 [00:09<00:00, 1.56s/it] You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 . Token indices sequence length is longer than the specified maximum sequence length for this model (1513 > 77). Running this sequence through the model will result in indexing errors The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: [". a sunlit sky gives a daytime feel but could be bright or maybe at night for a different vibe . adding clouds and birds in flight can enhance the futuristic feel without being too distracting . now , the city itself . neon lights are essential — like the ones on buildings , streets , and vehicles . they create that glowing effect which is common in sci - fi settings . the streetlamps should have a modern twist , maybe with neon colors changing over time to show a dynamic look . flying cars need to stand out . maybe have a variety like convertibles , sports cars , and trucks for realism . the colors could shift based on the type — like metallic blue for a sleek car and neon yellow for something flashy . adding white led lights around the wheels would make them pop . the interiors of these cars should be high - tech . glass windows with holographic digits display info while privacy screens keep passengers safe . seats made from something futuristic , maybe carbon fiber or something that looks high - end . the controls on the dashboard could have touch - sensitive panels for a smooth experience . the city 's architecture is another point . tall skyscrapers with transparent facades letting neon light through gives an otherworldly effect . skyscrapers as flying pads where people can take off into space adds a cool element , and a central hub or floating island with its own skyline would make the city feel interconnected . lighting effects are crucial . neon signs that react to movement using led technology could add some dynamism without being too bright . mirrors on buildings reflecting light like a digital canvas makes them look more alive and interactive . including technology elements , like plasma displays on walls showing info or projections onto flying cars adds depth . the city as a living organism with pulses of neon lights and moving parts gives it a life - like feel despite being man - made . in the evening , the city becomes an illuminated maze where lights dance and flicker , creating an ethereal atmosphere . at night , spaceships take off from docking stations add another dimension to the futuristic vibe . i should also consider how these elements work together . the flying cars moving through neon - lit streets with skyscrapers reflecting light creates a seamless , interconnected cityscape . the high - tech interiors enhance the futuristic theme without overwhelming the viewer . overall , this cityscape is a blend of high technology and vibrant colors that make it look both luxurious and thrilling . it 's designed to evoke an exciting environment where innovation meets entertainment . </ think > the concept of a futuristic cityscape featuring flying cars and neon lights is a classic sci - fi image that has been popularized in movies , video games , and architectural designs . here ’ s how such a cityscape might be imagined : ### 1 . ** sky as the backdrop ** - the sky would be either sunlit or at night , casting a glow on the clouds and reflecting off of birds flying overhead . - a few planes glide past in the distance , adding to the sense of air travel . ### 2 . ** the city itself ** - the city is a seamless , futuristic metropolis where architecture and technology are at their finest . - ** neon lights **: every building has neon signs that pulse and flicker in time with music or ambient sounds . the lights on the buildings could change colors , patterns , and even respond to movement ( e . g ., cars passing by ). - ** falling skies **: a thin , glowing barrier of light orbits the city at night , creating an ethereal effect . - ** sky - light **: a network of small solar - powered lamps suspended in mid - air that provide soft , diffused light to a wider area . ### 3 . ** flying cars ** - flying cars are abundant and serve as transportation throughout the city . - they come in various types : convertibles , sports cars ( with no engines but pure aerodynamics ), and cargo trucks for those who need to carry packages or people . - the exterior of these cars is covered in sleek materials that reflect the neon light . the interiors are high - tech , with glass windows displaying holographic digits while privacy screens cover sensitive information . - the tires have white led lights that glow as you ride , and the wheels spin when you brake or accelerate . ### 4 . ** car interiors ** - the seats are made of a material that seems almost liquid - like , with buttons on the dashboard that respond to touch ( e . g ., pressing them changes the car ’ s interior lights ). - the steering wheel is covered in holographic panels that show real - time data about speed , temperature , or other parameters . - seats are made from high - tech carbon fiber that can be reconfigured . ### 5 . ** the skyscraper metropolis ** - ** tall buildings **: the city ’ s skyscrapers have transparent facades that allow the neon lights to filter through and create a dazzling effect on the streets below . - ** sky - light as flying platforms **: at the top of some skyscrapers , there are platforms or landing pads where people can take off into space via flying cars . - ** central hub **: the city has a central hub or floating island that serves as a convergence point for all traffic and has its own miniature metropolis with neon - lit buildings . ### 6 . ** lighting effects ** - ** neon reactions **: neon signs react to movement , such as people walking through them ( the lights change color based on the surrounding environment ). - ** mirror reflections **: the glass exteriors of the skyscrapers reflect and refract the neon light into a kaleidoscope of patterns . - ** plasma lighting **: walls or ceilings have plasma panels that show changing colors and messages in real - time . ### 7 . ** the night city ** - at night , the city becomes an illuminated maze as lights dance and flicker in rhythm with music played by holographic performers embedded in buildings . - some areas are completely dark except for the neon lights of individual cars or buildings . ### 8 . ** higher - ledgered spaceships ** - the city is connected to outer space via a network of small , floating spaceships that orbit above ground and dock at the skyscrapers . - these spaceships have their own versions of flying cars with high - tech interiors and are constantly being serviced by shuttles from the city . ### 9 . ** interactive features ** - the neon lights on the buildings react to the presence of people , creating an interactive experience as they move through the city . - some buildings have holographic walls that project digital canvases onto them , changing with music or messages . ### 1 0 . ** the sky is the limit ** - the entire city seems to be floating on a layer of neon light , giving the impression of being part of an organism rather than a machine . - at night , the city pulses and breathes , with lights reacting to air traffic as if it were alive . this futuristic cityscape would combine high - tech elements like flying cars , advanced materials , and dynamic lighting to create a place that is both luxurious and thrilling . it would be designed to evoke excitement and wonder while also showcasing cutting - edge technology in architecture and transportation ."]
08-26
内容概要:本文详细介绍了一种基于Simulink的表贴式永磁同步电机(SPMSM)有限控制集模型预测电流控制(FCS-MPCC)仿真系统。通过构建PMSM数学模型、坐标变换、MPC控制器、SVPWM调制等模块,实现了对电机定子电流的高精度跟踪控制,具备快速动态响应和低稳态误差的特点。文中提供了完整的仿真建模步骤、关键参数设置、核心MATLAB函数代码及仿真结果分析,涵盖转速、电流、转矩和三相电流波形,验证了MPC控制策略在动态性能、稳态精度和抗负载扰动方面的优越性,并提出了参数自整定、加权代价函数、模型预测转矩控制和弱磁扩速等优化方向。; 适合人群:自动化、电气工程及其相关专业本科生、研究生,以及从事电机控制算法研究与仿真的工程技术人员;具备一定的电机原理、自动控制理论和Simulink仿真基础者更佳; 使用场景及目标:①用于永磁同步电机模型预测控制的教学演示、课程设计或毕业设计项目;②作为电机先进控制算法(如MPC、MPTC)的仿真验证平台;③支撑科研中对控制性能优化(如动态响应、抗干扰能力)的研究需求; 阅读建议:建议读者结合Simulink环境动手搭建模型,深入理解各模块间的信号流向与控制逻辑,重点掌握预测模型构建、代价函数设计与开关状态选择机制,并可通过修改电机参数或控制策略进行拓展实验,以增强实践与创新能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值