数据挖掘
lesdiables
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
预处理与降维
from sklearn.datasets import load_bostonboston = load_boston()boston_data = boston['data']boston_target = boston['target']boston_names = boston['feature_names']print('boston数据集数据的形状为:',boston_data.shape)print('boston数据集标签的形状为:',boston_target.shape).原创 2021-12-10 08:44:17 · 538 阅读 · 0 评论 -
分类与聚类
from sklearn.datasets import load_irisiris = load_iris()iris_data = iris['data'] ##提取数据集中的特征iris_target = iris['target'] ## 提取数据集中的标签iris_names = iris['feature_names'] ### 提取特征名print('iris数据集的特征名为:\n',iris_names)#sepal:花萼,petal:花瓣iris特征集的特征名为.原创 2021-12-10 08:51:38 · 820 阅读 · 0 评论 -
5.4 Logistic回归
# 使用LogisticRegression类构建Logistic回归模型from sklearn.linear_model import LogisticRegressionlr_model = LogisticRegression(solver='saga')# 训练Logistic回归模型lr_model.fit(x_trainStd, y_train)#print('训练出来的LogisticRegression模型为:\n', lr_model)print('各特征的相关系数为:.原创 2022-05-05 17:42:52 · 870 阅读 · 0 评论 -
5 线性回归
from sklearn.datasets import load_bostonfrom sklearn.model_selection import train_test_split# 导入load_boston数据,波士顿房价数据boston = load_boston()x = boston['data']y = boston['target']names = boston['feature_names']# 将数据划分为训练集和测试集x_train, x_test, y_tra.原创 2022-05-05 17:41:03 · 1273 阅读 · 0 评论 -
5.1 最小二乘法拟合函数
import numpy as npfrom scipy import optimizeimport matplotlib.pyplot as pltfrom matplotlib import rcParamsrcParams['font.sans-serif'] = 'SimHei'rcParams['axes.unicode_minus'] = False# 定义原始函数def func(x,p): ''' x:表示函数的未知数x。 p:接收tuple,.原创 2022-05-05 17:32:57 · 939 阅读 · 0 评论 -
4 分类算法
from sklearn.datasets import load_breast_cancerfrom sklearn.model_selection import train_test_split# 导入load_breast_cancer数据cancer = load_breast_cancer()x = cancer['data']y = cancer['target']# 将数据划分为训练集测试集x_train, x_test, y_train, y_test = train_te.原创 2022-04-07 10:39:33 · 1044 阅读 · 0 评论 -
3.4 支持向量机异常检测
import numpy as npimport matplotlib.pyplot as pltimport matplotlib.font_managerfrom sklearn import svm# Generate train dataX = 0.3 * np.random.randn(100, 2)#np.r_是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等。#np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。X_train = np.r_[X + 2,.原创 2022-04-07 10:36:09 · 593 阅读 · 0 评论 -
验证曲线SVC
from sklearn.model_selection import validation_curvefrom sklearn.datasets import load_digitsfrom sklearn.svm import SVCimport matplotlib.pyplot as pltimport numpy as npdigits = load_digits()X = digits.datay = digits.target#建立参数测试集param_range = .原创 2022-04-07 10:34:13 · 158 阅读 · 0 评论 -
学习曲线SVC
from sklearn.model_selection import learning_curvefrom sklearn.datasets import load_digitsfrom sklearn.svm import SVCimport matplotlib.pyplot as pltimport numpy as npdigits = load_digits()X = digits.datay = digits.targettrain_sizes, train_loss, te.原创 2022-04-07 10:32:33 · 237 阅读 · 0 评论 -
3 机器学习
from sklearn import datasetsiris = datasets.load_iris()from sklearn.model_selection import train_test_splitX_train,X_test,y_train,y_test=train_test_split(iris.data,iris.target,test_size=0.4,random_state=0)from sklearn import svm#建立模型svc = svm.SVC(.原创 2022-04-07 10:29:31 · 1425 阅读 · 0 评论
分享