poj 3176

本文介绍了一种经典的动态规划问题——金字塔形路径求和。通过从下至上递推的方式找到从顶部到底部的最大路径权值之和。文章提供了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

‘金字塔’形的基础dp题
选择一条从上到下的路,使得走过的总权值最大。
我们从下往上dp,每次挑选一个下一行大的与上面一行相加。

#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
#include<map>
#include<set>
#include<bitset>
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,num) scanf("%d%d%d",&a,&b,&num)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
#define ll __int64
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
//#pragma comment(linker,"/STACK:1024000000,1024000000")
int n,m;
#define M 110
#define N 1000010
#define Mod 258280327
#define p(x,y) make_pair(x,y)
const int MAX_len=550;
int a[400][400];
int main(){
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
//  freopen("out.txt", "w", stdout);
#endif
    while(sf(n)!=EOF){
        for(int i=1;i<=n;i++){
            for(int j=1;j<=i;j++){
                sf(a[i][j]);
            }
        }
        for(int i=n-1;i>=1;i--){
            for(int j=1;j<=i;j++){
                a[i][j] = a[i][j]+Max(a[i+1][j],a[i+1][j+1]);
            }
        }
        pf(a[1][1]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值