leetcode Convert Sorted List to Binary Search Tree题解

博客围绕将有序链表转换为平衡二叉树展开。题目要求把升序排列的单链表转为高度平衡的二叉树,即每个节点的左右子树深度差不超1。解题思路是取链表中间节点为根节点,前后部分分别作为左右子树递归处理,分四种情况考虑,并给出了Java代码。

题目描述:

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted linked list: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

      0
     / \
   -3   9
   /   /
 -10  5

中文理解:

给定一个有序链表,将该有序链表转换为平衡二叉树。

解题思路:

如果将有序链表转换为平衡二叉树,肯定是将链表的中间节点转换为二叉树的根节点,然后中间节点前后分别作为根节点的左右子树进行递归,不过要分链表长度为0,1,2,大于2的四种情况来考虑。具体参见代码。

代码(java):

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public int getListLength(ListNode head){
        int res=0;
        while(head!=null){
            res++;
            head=head.next;
        }
        return res;
    }
    public TreeNode sortedListToBST(ListNode head) {
        TreeNode root=null;
        if(head==null)return root;
        if(getListLength(head)==1)root=new TreeNode(head.val);
        else if(getListLength(head)==2){
            int max=Math.max(head.val,head.next.val);
            int min=Math.min(head.val,head.next.val);
            root=new TreeNode(max);
            root.left=new TreeNode(min);
        }
        else if(getListLength(head)>2){
            ListNode fast=head,slow=head;
            while(fast!=null && fast.next!=null){
                fast=fast.next.next;
                slow=slow.next;
            }
            root=new TreeNode(slow.val);
            root.right=sortedListToBST(slow.next);
            ListNode p=head;
            while(p!=null && p.next!=slow){
                p=p.next;
            }
            if(p!=null)p.next=null;
            root.left=sortedListToBST(head);
        }
        return root;
    }
}

 

 

【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值