1.1 Aim of this Assignment
To show how the inputs to an adder circuit may be modified to make the resulting circuit perform other useful functions.
1.2Outline Circuit of the Device
The figure below shows a multi-bit adder having inputs A( a number), B(a number), and C0( a single bit). The adder forms an output, F, where F=A plus B plus C0. T is also a number, and Cin, M1 and M0 are each single bits. Two logic circuits generate outputs B and C0 as shown.
|
Adder |
|
A B C0 F |
|
Logic |
Logic |
M1 |
M2 |
|
A |
|
T |
|
Cin |
(figure 1)
2.1 Task
Obtain Boolean expressions for the two logic circuits such that the output F is according to the following table. Here, Bi(Ti, M1, M0) and C0(Cin, M1, M0).
|
M1 M0 |
F |
|
0 0 |
A plus T |
|
0 1 |
A minus T |
|
1 0 |
A - 1 |
|
1 1 |
A+1 |
(table 1.1)
Here, F = A plus B plus C0. While Bi = (Ti, M1, M0) and C0(Cin, M1, M0), we can finish table 1.1 like below. F=A plus Bi and C.
|
M1 M0 |
F |
Bi |
C0 |
|
0 0 |
A plus T |
Ti |
0 |
|
0 1 |
A minus T |
Not Ti |
1 |
|
1 0 |
A - 1 |
1 |
0 |
|
1 1 |
A+1 |
0 |
1 |
(table 1.2)
i) A logic expression that relates bit Bi to bit Ti and M1 and M0.
From figure 1.1,we can see:
Here,
M1 M0 Ti Bi
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0
(table 1.3)
From the table1.3, we can draw a map for function Bi
.
|
Bi |
|
M1 |
|
Ti |
|
M0 |
|
0 |
1 |
0 |
1 |
|
1 |
0 |
0 |
1 |
(table 1.4)
From the table 1.4, here Boolean Expression for Bi.
Bi = M1M0’ + TiM0’ + Ti’M1’M0
( Ti’ = not Ti,
M1’ = not M1,
M0’ = not M0.)
Here, we can prove it:
|
M1M0’ |
TiM0’ |
Ti’M1’M0 |
M1 M0 |
F |
Bi |
|
0 1 |
Ti 1 |
Ti’ 1 0 |
0 0 |
A plus T |
Ti |
|
0 1 |
Ti 0 |
Ti’ 1 1 |
0 1 |
A minus T |
Not Ti |
|
1 1 |
Ti 1 |
Ti’ 0 0 |
1 0 |
A - 1 |
1 |
|
1 0 |
Ti 0 |
Ti’ 0 1 |
1 1 |
A+1 |
0 |
(Table 1.5)
ii) A logic expression that relates C0 to Cin and M1 and M0.
While C0(Cin, M1, M0), we know that C0 depends on Cin and M1 and M0. From the figure 1.1, we can see:
M1 M0 Cin C0
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1
(table 1.7)
From the table 1.7, we can draw a map for function C0.
|
C0 |
|
M1 |
|
Cin |
|
M0 |
|
0 |
1 |
1 |
0 |
|
0 |
1 |
1 |
0 |
(table 1.8)
From the table 1.8, we find the Boolean Expression for C0:
C0 = M0.
Here we can prove it :
|
M1 M0 |
F |
C0 |
|
0 0 |
A plus T |
0 |
|
0 1 |
A minus T |
1 |
|
1 0 |
A - 1 |
0 |
|
1 1 |
A+1 |
1 |
3.1 Conclusion:
In this assignment, we mainly aim on how an adder circuit maybe modified to obtain different function. By finding out the logical expression of Bi and C0, we can see how F relates to the states of inputs M1, M0, Ti and C0. F= A +( M1M0’ + TiM0’ + Ti’M1’M0) + M0.
该博客旨在展示如何修改加法器电路输入以实现其他功能。介绍了多比特加法器的电路,阐述了根据给定表格获取两个逻辑电路布尔表达式的任务,分别求出了Bi与Ti、M1、M0以及C0与Cin、M1、M0的逻辑表达式,最终得出F与各输入状态的关系。
5079

被折叠的 条评论
为什么被折叠?



