Kinsight:轻松帮你查找家居物品

美国弗吉尼亚大学的两位计算机科学家开发了一款名为Kinsight的应用,利用微软Kinect传感器追踪家居物品的摆放位置,帮助用户轻松找到手机、钥匙、钱包等常用物品,即使它们被藏在不易察觉的地方。

相信大家都有过这样的经历:家里的东西经常乱放,想用某样东西的时候死活都找不到。针对这个问题,来自美国弗吉尼亚大学的两位计算机科学家Nirjon和John Stankovic开发了一个名为Kinsight的应用,它可以追踪家居物品的摆放位置。当你忘记把手机、钥匙、钱包或者遥控器等物品放在哪里的时候,Kinsight都可以帮你找回。

Kinsight通过微软Kinect传感器和Kinect深度相机来记录家居物品所摆放的位置。它可以判定物品的大致位置,并且可以通过人体移动将比较相似的物品区分开来,举个例子,如果它发现起居室和厨房分别有一个长得像的杯子,但是录像中并没有看到你将杯子从起居室拿到厨房,它就可以断定为是两个不同的的杯子。

此外,如果物品藏在一些比较隐蔽的地方,比如不小心掉到床底或者沙发底下,Kinsight可以告诉你它上次见到物品所在的具体位置,从而帮助你缩小查找范围。

当然目前Kinsight的功能还不是很完善,如果你想要通过Kinsight来查找某件物品,你需要通过手动进行查找;而且那些比较小、距离较远、透明度较高的物品侦测起来会有一定的难度。由此看来,想要实现智能查找还有一定的距离,不过据New Scientist报道,研发人员正在致力于智能手机应用的开发,或许在不久的将来,你只要随口问一声“我把遥控丢哪了?”,它就会自动告诉你遥控的准确位置。

当然,这里并不提倡说有了Kinsight之后,大家就可以把东西随手一丢,毕竟平时养成良好的习惯,找起来的时候还是要方便很多,况且Kinsight也不是万能的,它也只是个辅助工具而已。

Via Theverge & New Scientist

Danice 供雷锋网专稿,转载请注明!)
内容概要:本文档是一份关于交换路由配置的学习笔记,系统地介绍了网络设备的远程管理、交换机与路由器的核心配置技术。内容涵盖Telnet、SSH、Console三种远程控制方式的配置方法;详细讲解了VLAN划分原理及Access、Trunk、Hybrid端口的工作机制,以及端口镜像、端口汇聚、端口隔离等交换技术;深入解析了STP、MSTP、RSTP生成树协议的作用与配置步骤;在路由部分,涵盖了IP地址配置、DHCP服务部署(接口池与全局池)、NAT转换(静态与动态)、静态路由、RIP与OSPF动态路由协议的配置,并介绍了策略路由和ACL访问控制列表的应用;最后简要说明了华为防火墙的安全区域划分与基本安全策略配置。; 适合人群:具备一定网络基础知识,从事网络工程、运维或相关技术岗位1-3年的技术人员,以及准备参加HCIA/CCNA等认证考试的学习者。; 使用场景及目标:①掌握企业网络中常见的交换与路由配置技能,提升实际操作能力;②理解VLAN、STP、OSPF、NAT、ACL等核心技术原理并能独立完成中小型网络搭建与调试;③通过命令示例熟悉华为设备CLI配置逻辑,为项目实施和故障排查提供参考。; 阅读建议:此笔记以实用配置为主,建议结合模拟器(如eNSP或Packet Tracer)动手实践每一条命令,对照拓扑理解数据流向,重点关注VLAN间通信、路由选择机制、安全策略控制等关键环节,并注意不同设备型号间的命令差异。
多旋翼无人机组合导航系统-多源信息融合算法(Matlab代码实现)内容概要:本文围绕多旋翼无人机组合导航系统,重点介绍了基于多源信息融合算法的设计与实现,利用Matlab进行代码开发。文中采用扩展卡尔曼滤波(EKF)作为核心融合算法,整合GPS、IMU(惯性测量单元)、里程计和电子罗盘等多种传感器数据,提升无人机在复杂环境下的定位精度与稳定性。特别是在GPS信号弱或丢失的情况下,通过IMU惯导数据辅助导航,实现连续可靠的位姿估计。同时,文档展示了完整的算法流程与Matlab仿真实现,涵盖传感器数据预处理、坐标系转换、滤波融合及结果可视化等关键环节,体现了较强的工程实践价值。; 适合人群:具备一定Matlab编程基础和信号处理知识,从事无人机导航、智能控制、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于多旋翼无人机的高精度组合导航系统设计;②用于教学与科研中理解多传感器融合原理与EKF算法实现;③支持复杂环境下无人机自主飞行与定位系统的开发与优化。; 阅读建议:建议结合Matlab代码与理论推导同步学习,重点关注EKF的状态预测与更新过程、多传感器数据的时间同步与坐标变换处理,并可通过修改噪声参数或引入更多传感器类型进行扩展实验。
源码来自:https://pan.quark.cn/s/28c3abaeb160 在高性能计算(High Performance Computing,简称HPC)范畴内,处理器的性能衡量对于改进系统构建及增强运算效能具有关键价值。 本研究聚焦于一种基于ARM架构的处理器展开性能评估,并就其性能与Intel Xeon等主流商业处理器进行对比研究,特别是在浮点运算能力、存储器带宽及延迟等维度。 研究选取了高性能计算中的典型任务,诸如Stencils计算方法等,分析了在ARM处理器上的移植编译过程,并借助特定的执行策略提升运算表现。 此外,文章还探讨了ARM处理器在“绿色计算”范畴的应用前景,以及面向下一代ARM服务器级SoC(System on Chip,简称SoC)的性能未来探索方向。 ARM处理器是一种基于精简指令集计算机(Reduced Instruction Set Computer,简称RISC)架构的微处理器,由英国ARM Holdings公司研发。 ARM处理器在移动设备、嵌入式系统及服务器级计算领域获得广泛应用,其设计优势体现为高能效比、低成本且易于扩展。 当前的ARMv8架构支持64位指令集,在高性能计算领域得到普遍采用。 在性能测试环节,重点考察了处理器的浮点运算能力,因为浮点运算在科学计算、图形渲染和数据处理等高性能计算任务中扮演核心角色。 实验数据揭示,ARM处理器在双精度浮点运算方面的性能达到475 GFLOPS,相当于Intel Xeon E5-2680 v3处理器性能的66%。 尽管如此,其内存访问带宽高达105 GB/s,超越Intel Xeon处理器。 这一发现表明,在数据密集型应用场景下,ARM处理器能够展现出与主流处理器相匹敌的性能水平。 在实践...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值