《深入浅出搜索架构(上篇)》

本文详细解析了搜索引擎的工作原理,包括正排索引与倒排索引的概念,以及如何通过这些索引结构进行高效的搜索过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自:点击打开链接http://zhuanlan.51cto.com/art/201702/531315.htm


四、搜索原理与核心数据结构

  • 什么是正排索引?
  • 什么是倒排索引?
  • 搜索的过程是什么样的?
  • 会用到哪些算法与数据结构?

前面的内容太宏观,为了照顾大部分没有做过搜索引擎的同学,数据结构与算法部分从正排索引、倒排索引一点点开始。

提问:什么是正排索引(forward index)?

回答:由key查询实体的过程,是正排索引。

用户表:t_user(uid, name, passwd, age, sex),由uid查询整行的过程,就是正排索引查询。

网页库:t_web_page(url, page_content),由url查询整个网页的过程,也是正排索引查询。

网页内容分词后,page_content会对应一个分词后的集合list。

简易的,正排索引可以理解为Map

提问:什么是倒排索引(inverted index)?

回答:由item查询key的过程,是倒排索引。

对于网页搜索,倒排索引可以理解为Map

举个例子,假设有3个网页:

url1 -> “我爱北京”

url2 -> “我爱到家”

url3 -> “到家美好”

这是一个正排索引Map

分词之后:

url1 -> {我,爱,北京}

url2 -> {我,爱,到家}

url3 -> {到家,美好}

这是一个分词后的正排索引Map

分词后倒排索引:

我 -> {url1, url2}

爱 -> {url1, url2}

北京 -> {url1}

到家 -> {url2, url3}

美好 -> {url3}

由检索词item快速找到包含这个查询词的网页Map

正排索引和倒排索引是spider和build_index系统提前建立好的数据结构,为什么要使用这两种数据结构,是因为它能够快速的实现“用户网页检索”需求(业务需求决定架构实现)。

提问:搜索的过程是什么样的?

假设搜索词是“我爱”,用户会得到什么网页呢?

(1)分词,“我爱”会分词为{我,爱},时间复杂度为O(1)

(2)每个分词后的item,从倒排索引查询包含这个item的网页list,时间复杂度也是O(1):

我 -> {url1, url2}

爱 -> {url1, url2}

(3)求list的交集,就是符合所有查询词的结果网页,对于这个例子,{url1, url2}就是最终的查询结果

看似到这里就结束了,其实不然,分词和倒排查询时间复杂度都是O(1),整个搜索的时间复杂度取决于“求list的交集”,问题转化为了求两个集合交集。

字符型的url不利于存储与计算,一般来说每个url会有一个数值型的url_id来标识,后文为了方便描述,list统一用list替代。

提问:list1和list2,求交集怎么求?

方案一:for * for,土办法,时间复杂度O(n*n)

每个搜索词命中的网页是很多的,O(n*n)的复杂度是明显不能接受的。倒排索引是在创建之初可以进行排序预处理,问题转化成两个有序的list求交集,就方便多了。

方案二:有序list求交集,拉链法

有序list求交集,拉链法

有序集合1{1,3,5,7,8,9}

有序集合2{2,3,4,5,6,7}

两个指针指向首元素,比较元素的大小:

(1)如果相同,放入结果集,随意移动一个指针

(2)否则,移动值较小的一个指针,直到队尾

这种方法的好处是:

(1)集合中的元素最多被比较一次,时间复杂度为O(n)

(2)多个有序集合可以同时进行,这适用于多个分词的item求url_id交集

这个方法就像一条拉链的两边齿轮,一一比对就像拉链,故称为拉链法

方案三:分桶并行优化

数据量大时,url_id分桶水平切分+并行运算是一种常见的优化方法,如果能将list1和list2分成若干个桶区间,每个区间利用多线程并行求交集,各个线程结果集的并集,作为最终的结果集,能够大大的减少执行时间。

举例:

  • 有序集合1{1,3,5,7,8,9, 10,30,50,70,80,90}
  • 有序集合2{2,3,4,5,6,7, 20,30,40,50,60,70}

求交集,先进行分桶拆分:

  • 桶1的范围为[1, 9]
  • 桶2的范围为[10, 100]
  • 桶3的范围为[101, max_int]

于是:

集合1就拆分成

  • 集合a{1,3,5,7,8,9}
  • 集合b{10,30,50,70,80,90}
  • 集合c{}
  • 集合2就拆分成
  • 集合d{2,3,4,5,6,7}
  • 集合e{20,30,40,50,60,70}
  • 集合e{}

每个桶内的数据量大大降低了,并且每个桶内没有重复元素,可以利用多线程并行计算:

  • 桶1内的集合a和集合d的交集是x{3,5,7}
  • 桶2内的集合b和集合e的交集是y{30, 50, 70}
  • 桶3内的集合c和集合d的交集是z{}

最终,集合1和集合2的交集,是x与y与z的并集,即集合{3,5,7,30,50,70}

方案四:bitmap再次优化

数据进行了水平分桶拆分之后,每个桶内的数据一定处于一个范围之内,如果集合符合这个特点,就可以使用bitmap来表示集合:

bitmap再次优化

如上图,假设set1{1,3,5,7,8,9}和set2{2,3,4,5,6,7}的所有元素都在桶值[1, 16]的范围之内,可以用16个bit来描述这两个集合,原集合中的元素x,在这个16bitmap中的第x个bit为1,此时两个bitmap求交集,只需要将两个bitmap进行“与”操作,结果集bitmap的3,5,7位是1,表明原集合的交集为{3,5,7}

水平分桶,bitmap优化之后,能极大提高求交集的效率,但时间复杂度仍旧是O(n)

bitmap需要大量连续空间,占用内存较大

方案五:跳表skiplist

有序链表集合求交集,跳表是最常用的数据结构,它可以将有序集合求交集的复杂度由O(n)降至O(log(n))

跳表skiplist

  • 集合1{1,2,3,4,20,21,22,23,50,60,70}
  • 集合2{50,70}

要求交集,如果用拉链法,会发现1,2,3,4,20,21,22,23都要被无效遍历一次,每个元素都要被比对,时间复杂度为O(n),能不能每次比对“跳过一些元素”呢?

跳表就出现了:

  • 集合1{1,2,3,4,20,21,22,23,50,60,70}建立跳表时,一级只有{1,20,50}三个元素,二级与普通链表相同
  • 集合2{50,70}由于元素较少,只建立了一级普通链表

如此这般,在实施“拉链”求交集的过程中,set1的指针能够由1跳到20再跳到50,中间能够跳过很多元素,无需进行一一比对,跳表求交集的时间复杂度近似O(log(n)),这是搜索引擎中常见的算法。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值